Howto

目次

10.1. ゲートウェイコンテナを動かす
10.1.1. ゲートウェイコンテナ利用の流れ
10.1.2. ゲートウェイコンテナ起動確認
10.1.3. 接続先の クラウド 環境を構築 (AWS)
10.1.3.1. AWS アカウントを作成する
10.1.3.2. IAM ユーザーを作成する
10.1.3.3. Armadillo-IoT ゲートウェイ A6E のシリアル番号を取得する
10.1.3.4. AWS IoT Core と Amazon CloudWatch の設定を行う
10.1.3.5. 設定に必要となるパラメータを取得する
10.1.4. コンフィグ設定
10.1.4.1. インターフェース設定
10.1.4.2. 接続先の クラウド 情報の設定
10.1.5. コンテナ起動・実行
10.1.5.1. データ確認
10.1.6. クラウドからの操作
10.1.6.1. クラウドからのデータ設定
10.1.6.2. クラウドからのデバイス制御
10.1.7. コンテナの終了
10.1.8. ログ内容確認
10.1.9. ゲートウェイコンテナの構成
10.2. ゲートウェイコンテナを拡張する
10.3. アプリケーションコンテナを作成、実行する
10.3.1. Podman - コンテナ仮想化ソフトウェア
10.3.1.1. Podman - コンテナ仮想化ソフトウェアとは
10.3.2. コンテナを操作する
10.3.2.1. イメージからコンテナを作成する
10.3.2.2. コンテナ一覧を表示する
10.3.2.3. コンテナを起動する
10.3.2.4. コンテナを停止する
10.3.2.5. コンテナの変更を保存する
10.3.2.6. コンテナの自動作成やアップデート
10.3.2.7. コンテナを削除する
10.3.2.8. イメージを削除する
10.3.2.9. 実行中のコンテナに接続する
10.3.2.10. コンテナ間で通信をする
10.3.2.11. 開発時に有用な—privilegedオプション
10.3.2.12. GPIO を扱う
10.3.2.13. I2C を扱う
10.3.2.14. シリアルインターフェースを扱う
10.3.2.15. USB を扱う
10.3.2.16. RTC を扱う
10.3.2.17. 音声出力を行う
10.3.2.18. ユーザースイッチのイベントを取得する
10.3.2.19. LED を扱う
10.3.3. 近距離通信を行う
10.3.3.1. Bluetooth デバイスを扱う
10.3.3.2. Wi-SUN デバイスを扱う
10.3.3.3. EnOcean デバイスを扱う
10.3.4. ネットワークを扱う
10.3.4.1. コンテナの IP アドレスを確認する
10.3.4.2. コンテナに固定 IP アドレスを設定する
10.3.5. サーバを構築する
10.3.5.1. HTTP サーバを構築する
10.3.5.2. FTP サーバを構築する
10.3.5.3. Samba サーバを構築する
10.3.5.4. SQL サーバを構築する
10.3.6. 異常検知
10.3.6.1. ソフトウェアウォッチドッグタイマーを扱う
10.4. コンテナの運用
10.4.1. コンテナの自動起動
10.4.2. podの作成
10.4.3. networkの作成
10.4.4. コンテナからのコンテナ管理
10.4.5. コンテナの配布
10.4.5.1. リモートリポジトリにコンテナを送信する方法
10.4.5.2. イメージを eMMC に保存する方法
10.4.5.3. イメージを SWUpdate で転送する方法
10.5. Armadilloのソフトウェアをビルドする
10.5.1. ブートローダーをビルドする
10.5.2. Linux カーネルをビルドする
10.5.3. Alpine Linux ルートファイルシステムをビルドする
10.5.3.1. デフォルトの Alpine Linux ルートファイルシステムを構築する
10.5.3.2. Alpine Linux ルートファイルシステムをカスタマイズする
10.6. SDブートの活用
10.6.1. ブートディスクの作成
10.6.2. SDブートの実行
10.7. Armadilloのソフトウェアの初期化
10.7.1. インストールディスクの作成
10.7.1.1. 初期化インストールディスクの作成
10.7.1.2. 開発が完了した Armadillo をクローンするインストールディスクの作成
10.7.2. インストールディスクを使用する
10.8. Armadilloのソフトウェアをアップデートする
10.8.1. SWUイメージとは?
10.8.2. SWUイメージの作成
10.8.3. イメージのインストール
10.8.4. hawkBitサーバーから複数のArmadilloに配信する
10.8.4.1. hawkBit のアップデート管理を CLI で行う
10.8.4.2. SWU で hawkBit を登録する
10.8.5. mkswu の desc ファイル
10.8.5.1. 例: sshdを有効にする
10.8.5.2. 例: Armadillo Base OSアップデート
10.8.5.3. 例: swupdate_preserve_files で Linux カーネル以外の Armadillo-IoT ゲートウェイ A6E 向けのイメージをインストールする方法
10.8.6. swupdate_preserve_files について
10.8.7. SWU イメージの内容の確認
10.8.8. SWUpdate と暗号化について
10.9. Armadillo Base OS の操作
10.9.1. アップデート
10.9.2. overlayfs と persist_file について
10.9.3. ロールバック状態の確認
10.9.4. u-boot の環境変数の設定
10.10. Device Treeをカスタマイズする
10.11. eMMC のデータリテンション
10.12. SMS を利用する (Cat.M1 モデルのみ)
10.12.1. 初期設定
10.12.2. SMS を送信する
10.12.3. SMS を受信する
10.12.4. SMS 一覧を表示する
10.12.5. SMS の内容を表示する
10.12.6. SMS を削除する
10.12.7. SMS を他のストレージに移動する

10.1. ゲートウェイコンテナを動かす

Armadillo-IoT ゲートウェイ A6E にはゲートウェイコンテナがプリインストールされています。 本章は、ゲートウェイコンテナを動かす方法について記載しています。

ゲートウェイコンテナは 「ゲートウェイコンテナとは」 に記載している通り、各インターフェースから取得するデータの設定や、接続するクラウドの情報を設定するだけで、 コンテナ内で動作するアプリケーションを修正することなく、クラウドにデータを送信することができます。

10.1.1. ゲートウェイコンテナ利用の流れ

以下では、必要機器の接続やネットワークの設定は完了しているものとして説明を進めます。 一連の流れは下記の通りです。

ゲートウェイコンテナでは AWS IoT Core への接続をサポートしています。 それぞれについて、データの可視化までを行うことが出来る環境を構築するためのテンプレートを提供しています。

  1. ゲートウェイコンテナ起動確認
  2. 接続先の クラウド 環境を構築 (クラウドにデータを送信する場合)

    1. AWS IoT Core
  3. コンフィグ 設定

    1. インターフェース設定
    2. 接続先クラウド設定
  4. コンテナ起動・実行
  5. コンテナ終了

10.1.2. ゲートウェイコンテナ起動確認

ゲートウェイコンテナは、デフォルトで Armadillo-IoT ゲートウェイ A6E に電源を入れると自動的に起動する設定となっています。 Armadillo が起動し、ゲートウェイコンテナが起動・実行されると、 アプリケーション LED が点滅します。

10.1.3. 接続先の クラウド 環境を構築 (AWS)

AWS では、 AWS IoT Core と Amazon CloudWatch を組み合わせてデータの可視化を行います。 本項では、 AWS 上で実施する設定を記載します。

手順中で使用するファイルは、Armadillo-IoT ゲートウェイ A6E ゲートウェイコンテナ から「クラウド設定データ」ファイル (a6e-gw-container-cloudsetting-[VERSION].zip) から予めダウンロードしておきます。

10.1.3.1. AWS アカウントを作成する

AWS アカウントの作成方法については、AWS 公式サイトの AWS アカウント作成の流れ https://aws.amazon.com/jp/register-flow/ を参照してください。

10.1.3.2. IAM ユーザーを作成する

AWS IAM (Identity and Access Management) は、AWS リソースへのアクセスを安全に管理するためのウェブサービスです。IAM により、誰を認証(サインイン)し、誰にリソースの使用を承認する(アクセス許可を持たせる)かを管理することができます。

  1. IAM へ移動し、「アクセス管理」→「ポリシー」を開き、「ポリシー作成」をクリックします。

    images/a6e-aws-create-policy.png
  2. 「JSON」を選択し、「クラウド設定データ」ファイル (a6e-gw-container-cloudsetting-[VERSION].zip) AWS フォルダ内の a6e_aws_iam_policy.json のファイルの内容を貼り付け、「次のステップ:タグ」をクリックします。

    images/a6e-aws-policy-json.png
  3. 何も選択せずに、「次のステップ:確認」をクリックします。
  4. ポリシー名を入力し、「ポリシーの作成」をクリックします。ここでは、ポリシー名を "policy_for_A6E" としています。

    images/a6e-aws-policy-confirm.png
  5. IAM から、「アクセス管理」→「ユーザー」を開き、「ユーザーを追加」をクリックします。

    images/a6e-aws-create-user.png
  6. 下記の通り入力、選択し、「次のステップ:アクセス権限」をクリックします。

    • ユーザー名を入力する
    • AWS 認証情報タイプは両方選択する
    • コンソールのパスワードは「自動生成パスワード」を選択する
    • パスワードのリセットが必要にチェックを入れる
    images/a6e-aws-user.png
  7. 「既存のポリシーを直接アタッチ」をクリックし、先ほど作成したポリシーを選択して、「次のステップ:タグ」をクリックします。

    images/a6e-aws-user-attach-policy.png
  8. 何も選択せずに、「次のステップ:確認」をクリックします。
  9. 内容を確認し、「ユーザーの作成」をクリックします。
  10. 「.csv のダウンロード」をクリックし、"new_user_credentials.csv" をダウンロードして、「閉じる」をクリックします。

    images/a6e-aws-user-success.png

10.1.3.3. Armadillo-IoT ゲートウェイ A6E のシリアル番号を取得する

AWS IoT Core に登録する Thing 名は Armadillo のシリアル番号を使用します。 環境設定時、パラメータに指定する必要があるため、下記のコマンドを実行しシリアル番号を取得します。

armadillo:~# hexdump -v -s 0xa0 -n 8 -e '/4 "%08X"' /sys/bus/nvmem/devices/imx-ocotp0/nvmem | cut -c 5-
00CD11112222 1

1

この場合、00CD11112222 がシリアル番号になります

10.1.3.4. AWS IoT Core と Amazon CloudWatch の設定を行う

AWS IoT Core に送信したデータを Amazon CloudWatch のダッシュボード上で可視化します。 ここでは、CloudFormation を用いて AWS IoT Core と Amazon CloudWatch の設定を行います。

  1. CloudFormation へ移動し、「スタックの作成」→「新しいリソースを使用(標準)」をクリックします。

    images/a6e-aws-cloudformation-create.png
  2. 「テンプレートファイルのアップロード」で「クラウド設定データ」ファイル (a6e-gw-container-cloudsetting-[VERSION].zip) AWS フォルダ内の a6e_aws_cfn_template.yml を選択し、「次へ」をクリックします。

    images/a6e-aws-cloudformation-upload.png
  3. スタック名を入力します。また、 「Armadillo-IoT ゲートウェイ A6E のシリアル番号を取得する」 で取得したシリアル番号をパラメータに指定し、「次へ」をクリックします。

    images/a6e-aws-cloudformation-param.png
  4. そのまま「次へ」をクリックします。
  5. チェックボックスを選択し、「スタックの作成」をクリックします。

    images/a6e-aws-cloudformation-stack.png
  6. 作成したスタックのステータスが"CREATE_COMPLETE" になったら作成完了です。

    images/a6e-aws-cloudformation-complete.png

10.1.3.5. 設定に必要となるパラメータを取得する

「接続先の クラウド 情報の設定」 で設定するパラメータを取得します。

  1. AWS IoT Core エンドポイント

    1. IoT Core へ移動し、サイドバー下部にある設定をクリックします。

      images/a6e-aws-check_endpoint1.png
    2. IoT Core エンドポイントが表示されます。

      images/a6e-aws-check_endpoint2.png
  2. アカウント ID

    1. AWS コンソール画面右上の ▼ をクリックします。

      images/a6e-aws-check_accountid1.png
    2. 下記画像の丸で囲んだマークをクリックすると、コピーすることができます。

      images/a6e-aws-check_accountid2.png

10.1.4. コンフィグ設定

利用したい内容に合わせて、 コンフィグを設定します。 コンフィグ はコンテナ起動時の内容が適用されるため、一度コンテナを終了させます。

[armadillo ~]# podman stop a6e-gw-container
a6e-gw-container

10.1.4.1. インターフェース設定

インターフェースの動作設定を行います。 設定ファイルは /var/app/rollback/volumes/gw_container/config/sensing_mgr.conf です。

[DEFAULT]
; cloud_config=true or false
cloud_config=false
; send_cloud=true or false
send_cloud=false
; cache=true or false
cache=false
; send_interval[sec]
send_interval=10
; data_send_oneshot=true or false
data_send_oneshot=false
; wait_container_stop[sec]
wait_container_stop=0

[LOG]
file=true
stream=true

[CPU_temp]
; polling_interval[sec]
polling_interval=1
send_cloud=true

[DI1]
; type=polling or edge
type=
; interval[sec]
interval=
; edge_type=falling or rising or both
edge_type=

[DI2]
; type=polling or edge
type=
; interval[sec]
interval=
; edge_type=falling or rising or both
edge_type=

[DO1]
; output_state=high or low
output_state=
; output_time[sec]
output_time=
; output_delay_time[sec]
output_delay_time=

[DO2]
; output_state=high or low
output_state=
; output_time[sec]
output_time=
; output_delay_time[sec]
output_delay_time=

[RS485_Data1]
;[RS485_Data1] ~ [RS485_Data4]
method=none
baudrate=
data_size=
; parity=none or odd or even
parity=
; stop=1 or 2
stop=
device_id=
func_code=
register_addr=
register_count=
; endian=little or big
endian=
; interval[sec]
interval=
; data_offset is option
data_offset=
; data_multiply is option
data_multiply=
; data_devider is option
data_devider=

図10.1 /var/app/rollback/volumes/gw_container/config/sensing_mgr.conf のフォーマット


  • 全体動作設定

    全体的な動作設定を行います。 設定ファイル中の以下の箇所が該当します。

    [DEFAULT]
    ; cloud_config=true or false
    cloud_config=false
    ; send_cloud=true or false
    send_cloud=false
    ; cache=true or false
    cache=false
    ; send_interval[sec]
    send_interval=10
    ; data_send_oneshot=true or false
    data_send_oneshot=false
    ; wait_container_stop[sec]
    wait_container_stop=0

    表10.1 [DEFAULT] 設定可能パラメータ

    項目概要 設定値 内容

    cloud_config

    クラウドからの設定変更を許容するか

    true

    許容する

    (デフォルト)false

    無視する

    send_cloud

    クラウドにデータを送信するか

    true

    送信する

    (デフォルト)false

    送信しない

    cache

    キャッシュ実施可否

    true

    キャッシュを実施する

    (デフォルト)false

    キャッシュを実施しない

    send_interval

    データ送信間隔[sec]

    1

    この値に従って、クラウドへデータを送信する

    data_send_oneshot

    データ取得後コンテナを終了させるか

    true

    1回データを取得し、コンテナを終了します。コンテナ終了通知をトリガに間欠動作を行う( 「状態遷移トリガにコンテナ終了通知を利用する」 )場合は、この設定にする必要があります。

    (デフォルト)false

    コンテナの実行を継続する (設定したインターバルでデータを取得する)

    wait_container_stop

    コンテナ終了までの待ち時間[sec]

    1

    data_send_oneshot が true の場合、クラウドへのデータ送信後、設定した時間 wait してからコンテナを終了する


  • ログ出力

    取得したデータのログを ログファイルに保存したり、コンソールに出力することが可能です。 設定ファイル中の以下の箇所が該当します。

    [LOG]
    file=true
    stream=true

    表10.2 [LOG] 設定可能パラメータ

    項目概要 設定値 内容

    FILE_LOG

    ログファイルに出力するか

    (デフォルト)true

    出力する

    false

    出力しない

    STREAM_LOG

    コンソールに出力するか

    (デフォルト)true

    出力する

    false

    出力しない


  • CPU_temp

    CPU 温度読み出しに関する設定を行います。 設定ファイル中の以下の箇所が該当します。

    [CPU_temp]
    ; polling_interval[sec]
    polling_interval=1
    send_cloud=true

    表10.3 [CPU_temp] 設定可能パラメータ

    項目概要 設定値 内容

    polling_interval

    データ取得間隔[sec]

    1~3600

    この値に従って、CPU 温度を読み出します

    send_cloud

    クラウドデータ送信可否

    (デフォルト)true

    送信する

    false

    送信しない


  • 接点入力

    接点入力に関する設定を行います。 設定ファイル中の以下の箇所が該当します。

    [DI1]
    ; type=polling or edge
    type=
    ; interval[sec]
    interval=
    ; edge_type=falling or rising or both
    edge_type=
    
    [DI2]
    ; type=polling or edge
    type=
    ; interval[sec]
    interval=
    ; edge_type=falling or rising or both
    edge_type=

    表10.4 [DI1,DI2] 設定可能パラメータ

    項目概要 設定値 内容

    type

    動作種別

    (空欄)

    接点入力状態取得を行わない

    polling

    ポーリング

    edge

    エッジ検出

    interval

    データ取得間隔[sec]

    1~3600

    この値に従って、値を読み出します

    edge_type

    エッジ検出設定

    falling

    立ち下がりエッジ

    rising

    立ち上がりエッジ

    both

    両方


  • 接点出力

    接点出力に関する設定を行います。 設定ファイル中の以下の箇所が該当します。 表10.1「[DEFAULT] 設定可能パラメータ」 において、クラウドと通信しない場合は ゲートウェイコンテナ起動後に設定した内容を出力します。クラウドと通信する場合は、「クラウドからのデバイス制御」 がトリガとなり、出力を開始します。

    [DO1]
    ; output_state=high or low
    output_state=
    ; output_time[sec]
    output_time=
    ; output_delay_time[sec]
    output_delay_time=
    
    [DO2]
    ; output_state=high or low
    output_state=
    ; output_time[sec]
    output_time=
    ; output_delay_time[sec]
    output_delay_time=

    表10.5 [DO1,DI2] 設定可能パラメータ

    項目概要 設定値 内容

    output_state

    出力状態

    high

    High

    low

    Low

    output_time

    出力時間[sec]

    1~3600

    出力コマンド実行後に output_state で指定したレベルを出力する時間。 0 を指定すると永続的に出力します。

    output_delay_time

    出力遅延時間[sec]

    0

    出力コマンド実行後、指定した時間遅延して出力します。


  • RS485

    RS485 に関する設定を行います。 設定ファイル中の以下の箇所が該当します。 なお、RS485_Data1 から RS485_Data4 まで、4個のデータについて設定することができます。 デフォルトでは RS485_Data1 のみファイルに記載されているため、RS485_Data2, RS485_Data3, RS485_Data4 については適宜コピーして記載してください。

    [RS485_Data1]
    ;[RS485_Data1] ~ [RS485_Data4]
    method=none
    baudrate=
    data_size=
    ; parity=none or odd or even
    parity=
    ; stop=1 or 2
    stop=
    device_id=
    func_code=
    register_addr=
    register_count=
    ; endian=little or big
    endian=
    ; interval[sec]
    interval=
    ; data_offset is option
    data_offset=
    ; data_multiply is option
    data_multiply=
    ; data_devider is option
    data_devider=

    表10.6 [RS485_Data1, RS485_Data2, RS485_Data3, RS485_Data4] 設定可能パラメータ

    項目概要 設定値 内容

    method

    通信種別

    none

    RS485を利用しない

    rtu

    Modbus-RTU

    data_size

    データサイズ

    8

    baudrate

    ボーレート

    1200~38400[bps]

    通信速度を指定します

    parity

    パリティビット

    none

    None

    odd

    Odd

    even

    Even

    stop

    ストップビット

    1

    1

    2

    2

    device_id

    Modbusスレーブ機器のデバイスID

    0x01 〜 0xF7

    func_code

    ファンクションコード

    0x03 or 0x04

    register_addr

    レジスタアドレス

    機器依存

    値を読み出すレジスタのアドレスを指定

    register_count

    読み出しレジスタ数

    1 or 2

    一度に読み出すレジスタ数を指定

    endian

    エンディアン設定

    little

    リトルエンディアン

    big

    ビッグエンディアン

    interval

    データ取得間隔[sec]

    1~3600

    この値に従って、値を読み出します

    data_offset

    読み出し値に加算する値

    任意の値(整数値)

    指定は任意です。読み出したレジスタ値に加算する値を指定します

    data_multiply

    読み出し値と乗算する値

    任意の値(整数値)

    指定は任意です。読み出したレジスタ値と乗算する値を指定します

    data_devider

    読み出し値と除算する値

    任意の値(整数値)

    指定は任意です。読み出したレジスタ値と除算する値を指定します


10.1.4.2. 接続先の クラウド 情報の設定

クラウド と連携する場合、接続先の クラウド の情報を入力する必要があります。 設定ファイルは /var/app/rollback/volumes/gw_container/config/cloud_agent.conf です。

[CLOUD]
SERVICE = AWS

[LOG]
FILE_LOG = true
STREAM_LOG = true

[AWS]
AWS_IOT_HOST =
AWS_IOT_REGION =
AWS_IOT_ACCOUNTID =
AWS_IOT_ENDPOINT =
AWS_IOT_CERT_FILE = /cert/device_cert.pem
AWS_IOT_POLICY_FILE = /config/aws_iot_policy.json
AWS_IOT_SHADOW_ENDPOINT =
AWS_IOT_CA_FILE = /cert/AmazonRootCA1.pem
AWS_IOT_PKCS11_PATH = /usr/lib/plug-and-trust/libsss_pkcs11.so
AWS_IOT_KEY_LABEL = sss:100100F0
AWS_ACCESS_KEY =
AWS_SECRET_KEY =
AWS_IOT_PORT = 443
AWS_IOT_PIN =

図10.2 /var/app/rollback/volumes/gw_container/config/cloud_agent.conf のフォーマット


  • 接続先の クラウドサービス 種別

    ゲートウェイコンテナが接続するクラウドサービスの種別を指定します。 設定ファイル中の以下の箇所が該当します。

    [CLOUD]
    SERVICE = AWS

    表10.7 [CLOUD] 設定可能パラメータ

    項目概要 設定値 内容

    SERVICE

    接続先クラウドサービスを指定

    AWS

    AWS IoT Core に接続


  • ログ出力

    クラウド との接続状態や送受信したデータのログを ログファイルに保存したり、コンソールに出力することが可能です。 設定ファイル中の以下の箇所が該当します。

    [LOG]
    FILE_LOG = true
    STREAM_LOG = true

    表10.8 [CLOUD] 設定可能パラメータ

    項目概要 設定値 内容

    FILE_LOG

    ログファイルに出力するか

    (デフォルト)true

    出力する

    false

    出力しない

    STREAM_LOG

    コンソールに出力するか

    (デフォルト)true

    出力する

    false

    出力しない


  • AWS

    ここでは、 AWS に接続する場合の設定内容を記載します。 設定ファイル中の以下の箇所が該当します。

    [AWS]
    AWS_IOT_HOST =
    AWS_IOT_REGION =
    AWS_IOT_ACCOUNTID =
    AWS_IOT_ENDPOINT =
    AWS_IOT_CERT_FILE = /cert/device_cert.pem
    AWS_IOT_POLICY_FILE = /config/aws_iot_policy.json
    AWS_IOT_SHADOW_ENDPOINT =
    AWS_IOT_CA_FILE = /cert/AmazonRootCA1.pem
    AWS_IOT_PKCS11_PATH = /usr/lib/plug-and-trust/libsss_pkcs11.so
    AWS_IOT_KEY_LABEL = sss:100100F0
    AWS_ACCESS_KEY =
    AWS_SECRET_KEY =
    AWS_IOT_PORT = 443
    AWS_IOT_PIN =

    表10.9 [CLOUD] 設定可能パラメータ

    項目概要設定値・設定例 取得方法

    AWS_IOT_HOST

    IoT Core REST API エンドポイント(リージョンに準ずる)

    (例) iot.ap-northeast-1.amazonaws.com

    AWS IoT Core - コントロールプレーンエンドポイント [https://docs.aws.amazon.com/ja_jp/general/latest/gr/iot-core.html] から取得

    AWS_IOT_REGION

    リージョン

    (例) ap-northeast-1

    AWS リージョンエンドポイント[https://docs.aws.amazon.com/ja_jp/general/latest/gr/rande.html] から取得

    AWS_IOT_ACCOUNTID

    アカウントID

    (例) 111111111111

    AWS マネジメントコンソール上から取得(参考:「設定に必要となるパラメータを取得する」)

    AWS_IOT_ENDPOINT

    AWS IoT Core エンドポイント(リージョンに準ずる)

    (例) https://iot.ap-northeast-1.amazonaws.com

    AWS IoT Core - コントロールプレーンエンドポイント [https://docs.aws.amazon.com/ja_jp/general/latest/gr/iot-core.html] から取得

    AWS_IOT_CERT_FILE

    デバイス証明書ファイルパス

    (デフォルト)/cert/device_cert.pem

    変更不要

    AWS_IOT_POLICY_FILE

    AWS IoT Core ポリシー テンプレートファイルパス

    (デフォルト)/config/aws_iot_policy.json

    変更不要

    AWS_IOT_SHADOW_ENDPOINT

    AWS IoT Core エンドポイント

    (例)xxxxxxxxx-ats.iot.ap-northeast-1.amazonaws.com

    AWS IoT Core [設定] - [デバイスデータエンドポイント] から取得 (参考:「設定に必要となるパラメータを取得する」)

    AWS_IOT_CA_FILE

    AWS IoT Core ルートCAファイルパス

    (デフォルト)/cert/AmazonRootCA1.pem

    変更不要

    AWS_IOT_PKCS11_PATH

    PKCS#11 ライブラリパス

    (デフォルト)/usr/lib/plug-and-trust/libsss_pkcs11.so

    変更不要

    AWS_IOT_KEY_LABEL

    利用する秘密鍵のラベル

    (デフォルト)sss:100100F0

    変更不要

    AWS_ACCESS_KEY

    アクセスキー

    (例)AAAAAAAAAXXXXXXX

    「IAM ユーザーを作成する」 でダウンロードしたIAM ユーザー クレデンシャル情報

    AWS_SECRET_KEY

    シークレットキー

    (例)sssssssddddddtttttttttt

    「IAM ユーザーを作成する」 でダウンロードしたIAM ユーザー クレデンシャル情報

    AWS_IOT_PORT

    MQTT 接続ポート

    (デフォルト)443

    変更不要

    AWS_IOT_PIN

    PIN

    -

    指定不要


10.1.5. コンテナ起動・実行

設定ファイルの修正が完了したら、コンテナを起動します。 コンテナが起動すると、設定に従ってコンテナ内のアプリケーションが実行される仕組みとなっています。

[armadillo ~]# podman_start a6e-gw-container
Starting 'a6e-gw-container'
a3b719c355de677f733fa8208686c29424be24e57662d3972bc4131ab7d145ad

表10.1「[DEFAULT] 設定可能パラメータ」 でクラウドにデータを送信する設定を行った場合は、クラウド接続後、アプリケーションLEDの状態が点滅から点灯に変化します。

10.1.5.1. データ確認

Armadillo からクラウドに送信されるデータは以下の通りです。

  • デバイス情報

    表10.10 デバイス情報データ一覧

    項目概要

    DevInfo_SerialNumber

    シリアル番号

    DevInfo_LAN_MAC_Addr

    LAN MAC アドレス

    DevInfo_ABOS_Ver

    Armadillo Base OS バージョン

    DevInfo_Container_Ver

    コンテナイメージバージョン


  • 接点入力

    表10.11 接点入力データ一覧

    項目概要

    DI1_polling

    DI1 のポーリング結果

    DI2_polling

    DI2 のポーリング結果

    DI1_edge

    DI1 のエッジ検出結果

    DI2_edge

    DI2 のエッジ検出結果


  • 接点出力

    クラウドに送信するデータはありません。

  • RS485

    表10.12 RS485データ一覧

    項目概要

    RS485_Data1

    RS485_Data1 の読み出し値

    RS485_Data2

    RS485_Data2 の読み出し値

    RS485_Data3

    RS485_Data3 の読み出し値

    RS485_Data4

    RS485_Data4 の読み出し値


  • ユーザースイッチ

    表10.13 ユーザースイッチ関連データ一覧

    項目概要

    sw_state

    ユーザースイッチの状態


クラウドにデータが届いているかどうかは、以下の方法で確認することができます。

  • AWS

    Amazon CloudWatch ダッシュボードで、データが届いているかの確認を行う事ができます。

    1. CloudWatch に移動し、「ダッシュボード」を選択します。

      images/a6e-aws-cloudwatch.png
    2. 「AWS IoT Core と Amazon CloudWatch の設定を行う」 で CloudWatch ダッシュボードが作成されています。 ダッシュボード名は armadillo_iot_a6e_<シリアル番号> です。

      images/a6e-aws-cloudwatch-dashboard.png
    3. ダッシュボード名をクリックすると、下記のような画面が表示されます。

      images/a6e-aws-cloudwatch-dashboard-all.png
    • 接点入力

      images/a6e-aws-cloudwatch-dashboard-di.png
    • RS485

      images/a6e-aws-cloudwatch-dashboard-rs485.png
    • CPU温度

      images/a6e-aws-cloudwatch-dashboard-cputemp.png
    • ユーザースイッチ

      images/a6e-aws-cloudwatch-dashboard-sw.png

    また、実際にデバイスから届いているデータを確認する場合は、 AWS IoT Core の Device Shadow で確認を行います。

    1. AWS IoT Core に移動し、「管理」→「すべてのデバイス」→「モノ」を選択します。

      images/a6e-aws-iot-core.png
    2. デバイスの名前は 「Armadillo-IoT ゲートウェイ A6E のシリアル番号を取得する」 で取得したシリアル番号で登録されています。

      images/a6e-aws-iot-core-thing.png
    3. 「Device Shadow」の「Classic Shadow」を選択します。

      images/a6e-aws-iot-core-thing-detail.png
    4. 下記の通り、 Armadillo から送信されてきたデータを確認することができます。

      images/a6e-aws-iot-core-thing-shadow.png

10.1.6. クラウドからの操作

10.1.6.1. クラウドからのデータ設定

各インターフェースの設定については、 「インターフェース設定」 に記載している通り Armadillo 上の設定ファイルで行いますが、クラウドから設定値を変更することも可能です。

なお、クラウドからデータ設定を行うためには、 表10.1「[DEFAULT] 設定可能パラメータ」cloud_config を true に設定する必要があります。

設定を変更できる項目は以下の通りです。

  • 接点入力設定
  • 接点出力設定
  • RS485 レジスタ読み出し

    AWS

    AWS IoT Core の Device Shadow を更新して設定を行います。

    1. AWS IoT Core に移動し、「管理」→「すべてのデバイス」→「モノ」を選択します。

      images/a6e-aws-iot-core.png
    2. デバイスの名前は 「Armadillo-IoT ゲートウェイ A6E のシリアル番号を取得する」 で取得したシリアル番号で登録されています。

      images/a6e-aws-iot-core-thing.png
    3. 「Device Shadow」の「Classic Shadow」を選択します。

      images/a6e-aws-iot-core-thing-detail.png
    4. Device Shadow ドキュメントの「編集」を選択します。

      images/a6e-aws-iot-core-thing-shadow-edit.png
    5. 入力画面が表示されるため、設定データを入力し「更新」をクリックします。

      images/a6e-aws-iot-core-thing-shadowupdate.png

    +

それぞれ、下記の通りのフォーマットとなっています。

  • 接点入力設定

    シャドウのフォーマットは下記の通りです。

    {
      "state": {
        "desired": {
        "<制御ポート>_config": { 1
            "type" : <polling or edge>,
            "edge_type" : <true or false>,
            "interval" : <読み出し間隔>
          }
        }
      }
    }

    1

    制御ポートは DO1, DO2 のいずれかを指定してください

    表10.14 接点入力設定シャドウ設定値

    項目概要 設定値 内容

    type

    動作種別

    (空欄)

    接点入力状態取得を行わない

    polling

    ポーリング

    edge

    エッジ検出

    edge_type

    エッジ検出設定

    falling

    立ち下がりエッジ

    rising

    立ち上がりエッジ

    both

    両方

    interval

    データ取得間隔[sec]

    1~3600

    この値に従って、値を読み出します


    {
      "state": {
        "desired": {
        "DI1_config": {
            "type" : "polling",
            "edge_type" : false,
            "interval" : 5
          }
        }
      }
    }

    図10.3 接点入力制御シャドウ設定例


    • 接点出力設定

      シャドウのフォーマットは下記の通りです。

      {
        "state": {
          "desired": {
          "<制御ポート>_config": { 1
              "output_state" : <high or low>,
              "output_time" : <出力時間>,
              "output_delay_time" : <出力遅延時間>
            }
          }
        }
      }

      1

      制御ポートは DO1, DO2 のいずれかを指定してください

      表10.15 接点出力設定シャドウ設定値

      項目概要 設定値 内容

      output_state

      出力状態

      high

      High

      low

      Low

      output_time

      出力時間[sec]

      1~3600

      出力コマンド実行後に output_state で指定したレベルを出力する時間。 0 を指定すると永続的に出力します。

      output_delay_time

      出力遅延時間[sec]

      0

      出力コマンド実行後、指定した時間遅延して出力します。


      {
        "state": {
          "desired": {
          "DO1_config": {
              "output_state" : "high",
              "output_time" : 10,
              "output_delay_time" : 10
            }
          }
        }
      }

      図10.4 接点出力制御シャドウ設定例


    • RS485 レジスタ読み出し

      シャドウのフォーマットは下記の通りです。

      {
        "state": {
          "desired": {
            "RS485_Data<1~4>": { 1
              "method" : <種別>,
              "baudrate" : <ボーレート>,
              "data_size": <データサイズ>,
              "parity" : <パリティ>,
              "stop" : <ストップビット>,
              "device_id" : <デバイス ID>,
              "func_code" : <ファンクションコード>,
              "register_addr" : <レジスタアドレス>,
              "register_count" : <読み出すレジスタ数>,
              "endian" : <エンディアン種別>,
              "interval" : <読み出し間隔>,
              "data_offset" : <データに加算する値>,
              "data_multiply" : <データに乗算する値>,
              "data_devider" : <データと除算する値>
            }
          }
        }
      }

      1

      1~4 のいずれかを指定してください

      表10.16 RS485レジスタ読み出しシャドウ設定値

      項目概要 設定値 内容

      method

      通信種別

      none

      RS485を利用しない

      rtu

      Modbus-RTU

      data_size

      データサイズ

      8

      baudrate

      ボーレート

      1200~38400[bps]

      通信速度を指定します

      parity

      パリティビット

      none

      None

      odd

      Odd

      even

      Even

      stop

      ストップビット

      1

      1

      2

      2

      device_id

      Modbusスレーブ機器のデバイスID

      0x01 〜 0xF7

      func_code

      ファンクションコード

      0x03 or 0x04

      register_addr

      レジスタアドレス

      機器依存

      値を読み出すレジスタのアドレスを指定

      register_count

      読み出しレジスタ数

      1 or 2

      一度に読み出すレジスタ数を指定

      endian

      エンディアン設定

      little

      リトルエンディアン

      big

      ビッグエンディアン

      interval

      データ取得間隔[sec]

      1~3600

      この値に従って、値を読み出します

      data_offset

      読み出し値に加算する値

      任意の値(整数値)

      指定は任意です。読み出したレジスタ値に加算する値を指定します

      data_multiply

      読み出し値と乗算する値

      任意の値(整数値)

      指定は任意です。読み出したレジスタ値と乗算する値を指定します

      data_devider

      読み出し値と除算する値

      任意の値(整数値)

      指定は任意です。読み出したレジスタ値と除算する値を指定します


      {
        "state": {
          "desired": {
          "DO1_config": {
              "output_state" : "high",
              "output_time" : 10,
              "output_delay_time" : 10,
              "relation_type" : false
            }
          }
        }
      }

      図10.5 RS485レジスタ読み出しシャドウ設定例


10.1.6.2. クラウドからのデバイス制御

以下について、クラウドからデバイスの動きを制御することができます。

  • 接点出力制御

    • 接点出力開始/終了の制御
  • RS485 レジスタ書き込み

    • 接続したデバイスのレジスタへの書き込み
  • LED 点灯制御

    • アプリケーション LED の点灯 on/off 制御を行います

それぞれ、以下の手順で実行します。

AWS

AWS IoT Core の デバイスシャドウを更新し、制御を行います。 更新方法については 「クラウドからのデータ設定」 と同じです。

  • 接点出力制御

    シャドウのフォーマットは下記の通りです。

    {
      "state": {
        "desired": {
        "<制御ポート>_command": { 1
            "action" : <start or stop>
          }
        }
      }
    }

    1

    制御ポートは DO1, DO2 のいずれかを指定してください

    表10.17 接点出力制御シャドウ設定値

    項目概要 設定値 内容

    action

    制御状態

    start

    出力開始

    stop

    出力停止


    {
      "state": {
        "desired": {
        "DO1_command": {
            "action" : "start"
          }
        }
      }
    }

    図10.6 接点出力制御シャドウ設定例


  • RS485 レジスタ書き込み

    シャドウのフォーマットは下記の通りです。

    {
      "state": {
        "desired": {
          "RS485_command": {
            "method" : <種別>,
            "baudrate" : <ボーレート>,
            "data_size": <データサイズ>,
            "parity" : <パリティ>,
            "stop" : <ストップビット>,
            "device_id" : <デバイス ID>,
            "func_code" : <ファンクションコード>,
            "register_addr" : <レジスタアドレス>,
            "write_byte": <書き込む値>
          }
        }
      }
    }

    表10.18 RS485 レジスタ書き込みシャドウ設定値

    項目概要 設定値 内容

    method

    通信種別

    rtu

    Modbus-RTU

    data_size

    データサイズ

    8

    baudrate

    ボーレート

    1200~38400[bps]

    通信速度を指定します

    parity

    パリティビット

    none

    None

    odd

    Odd

    even

    Even

    stop

    ストップビット

    1

    1

    2

    2

    device_id

    Modbusスレーブ機器のデバイスID

    0x01 〜 0xF7

    func_code

    ファンクションコード

    0x03 or 0x04

    register_addr

    レジスタアドレス

    機器依存

    値を読み出すレジスタのアドレスを指定

    write_byte

    レジスタに書き込む値

    1


    {
      "state": {
        "desired": {
          "RS485_command": {
            "method" : "rtu",
            "baudrate" : 19200,
            "data_size": 8,
            "parity" : "none",
            "stop" : 1,
            "device_id" : 1,
            "func_code" : 5,
            "register_addr" : 3,
            "write_byte": 1
          }
        }
      }
    }

    図10.7 RS485 レジスタ書き込みシャドウ設定例


  • LED

    シャドウのフォーマットは下記の通りです。

    {
      "state": {
        "desired": {
        "led_command": {
            "state" : <ON or OFF>
          }
        }
      }
    }

    表10.19 LED 点灯制御シャドウ設定値

    項目概要 設定値 内容

    state

    点灯状態

    on

    点灯

    off

    消灯


    {
      "state": {
        "desired": {
        "led_command": {
            "state" : "off"
          }
        }
      }
    }

    図10.8 LED 点灯制御シャドウ設定例


10.1.7. コンテナの終了

podman_start で起動したゲートウェイコンテナを終了させる場合は、以下のコマンドを実行してください。

[armadillo ~]# podman stop a6e-gw-container

10.1.8. ログ内容確認

「コンフィグ設定」 でログファイルにログを出力する設定にした場合、インターフェース部とクラウド部にわかれて、それぞれ以下のファイルに出力されます。

  • インターフェース部

    • /var/app/volumes/gw_container/log/sensing_mgr.log
  • クラウド部

    • /var/app/volumes/gw_container/log/cloud_agent.log

ログファイルは自動的にローテートされるように設定されています。 ローテートされると、各ファイルの末尾に番号が付与されます。 なお、ファイル数が10を超えた場合は古いファイルから削除されます。

10.1.9. ゲートウェイコンテナの構成

ゲートウェイコンテナは下記の通り構成されています。 コンテナ内外関わらず、誤ってファイルを削除した場合はインストールディスクで初期化を行ってください。

起動スクリプト

コンテナ起動時、下記のスクリプトを実行します。

  • /usr/bin/gw-app.sh
ゲートウェイコンテナアプリケーション

ゲートウェイコンテナアプリケーションは下記に配置されています。

  • /usr/lib/python3.10/site-packages/atgateway/
ボリュームマウント

以下のパスをコンテナ内でマウントしています。

ホストパス コンテナパス 概要

/var/app/rollback/volumes/gw_container/cert

/cert

デバイス認証関連ファイル

/var/app/rollback/volumes/gw_container/config

/config

ゲートウェイコンテナコンフィグファイル

/var/app/rollback/volumes/gw_container/src

/root/gw_container

ゲートウェイコンテナ main 関数

/var/app/volumes/gw_container/log

/log

ゲートウェイコンテナ ログ

10.2. ゲートウェイコンテナを拡張する

ゲートウェイコンテナのアプリケーションは Python で記述されており、起動スクリプトから実行されます。

起動スクリプトから実行されるコードは /var/app/volumes/gw_container/src に配置されています。 デフォルトでは /var/app/volumes/gw_container/src/default/main.py からコンテナ内のゲートウェイコンテナアプリケーションを実行します。 /var/app/volumes/gw_container/src/customize/main.py を配置すると、自動的にそちらが実行されるようになります。 ゲートウェイコンテナアプリケーションのソースコードは以下にアップロードしているため、適宜参照してご利用ください。

10.3. アプリケーションコンテナを作成、実行する

10.3.1. Podman - コンテナ仮想化ソフトウェア

10.3.1.1. Podman - コンテナ仮想化ソフトウェアとは

コンテナとはホスト OS 上に展開される仮想的なユーザ空間のことです。 コンテナを使用することで複数の Armadillo-IoT ゲートウェイ A6E でも同一の環境がすぐに再現できます。 ゲスト OS を必要としない仮想化であるため、アプリケーションの起動が素早いという特徴があります。

Podman とはこのようなコンテナを管理するためのソフトウェアであり、使用方法は コンテナ管理ソフトウェアの 1 つである Docker と互換性があります。

10.3.2. コンテナを操作する

この章では、コンテナ仮想化ソフトウェアの 1 つである Podman の基本的な使い方について説明します。 Armadillo-IoT ゲートウェイ A6E で実行させたいアプリケーションとその実行環境自体を 1 つの Podman イメージとして扱うことで、 複数の Armadillo-IoT ゲートウェイ A6E がある場合でも、全てのボード上で同一の環境を再現させることが可能となります。

この章全体を通して、イメージの公開・共有サービスである Docker Hub から取得した、Alpine Linux のイメージを 使って説明します。

10.3.2.1. イメージからコンテナを作成する

イメージからコンテナを作成するためには、podman_start コマンドを実行します。 podman や docker にすでに詳しいかたは podman run コマンドでも実行できますが、ここでは 「コンテナの運用」 で紹介するコンテナの自動起動の準備も重ねて podman_start を使います。 イメージは Docker Hub から自動的に取得されます。 ここでは、簡単な例として "ls /" コマンドを実行するコンテナを作成します。

[armadillo ~]# vi /etc/atmark/containers/my_container.conf 1
set_image docker.io/alpine
set_command ls /
[armadillo ~]# podman pull docker.io/alpine 2
Trying to pull docker.io/library/alpine:latest...
Getting image source signatures
:(省略)
Writing manifest to image destination
Storing signatures
a6215f271958c760a2975a6765016044115dbae4b90f414eba3a448a6a26b4f6
[armadillo ~]# podman_start my_container 3
Starting 'my_container'
b141e899b5ef7c9ec5434bda8f6a83d3e6bfc94f74bfb5dcef2a22041c71fdbf
[armadillo ~]# podman logs my_container 4
bin
dev
:(省略)
usr
var
[armadillo ~]#

図10.9 コンテナを作成する実行例


1

コンテナのコンフィグを作成します。このファイルでは、コンテナのイメージやコマンド、デバイスへのアクセス権限を設定します。詳しい設定の説明には 「コンテナの自動起動」 を参照ください。

2

コンテナのイメージを取得します。イメージが Armadillo に置いてない場合は「Error: docker.io/alpine: image not known」の様なエラーで失敗します。

3

コンテナを起動します。これは Armadillo 起動時に自動的に起動されるコンテナと同じものになります。自動起動が不要な場合には set_autostart no で無効化できます。

4

podman logs コマンドで出力を確認します。 "ls /" を実行するだけの "my_container" という名前のコンテナが作成されました。 コンテナが作成されると同時に "ls /" が実行され、その結果がログに残ります。 ここで表示されているのは、コンテナ内部の "/" ディレクトリのフォルダの一覧です。

[警告]

コンフィグファイルの直接な変更と podman pull によるコンテナの取得はデフォルト状態ではメモリ上でしか保存されません。 ファイルは persist_file で必ず保存し、コンテナイメージは abos-ctrl podman-storage --disk で podman のストレージを eMMC に切り替えるか abos-ctrl podman-rw で一時的に eMMC に保存してください。 運用中の Armadillo には直接に変更をせず、 swupdate でアップデートしてください。 コンフィグファイルを保存して、 set_autostart no を設定しない場合は自動起動します。

[ティップ]

podman_start でコンテナが正しく起動できない場合は podman_start -v <my_container>podman run のコマンドを確認し、 podman logs <my_container> で出力を確認してください。

10.3.2.2. コンテナ一覧を表示する

作成済みコンテナ一覧を表示するためには podman ps コマンドを実行します。

[armadillo ~]# podman ps -a
CONTAINER ID  IMAGE                            COMMAND    CREATED         STATUS                    PORTS    NAMES
d6de5881b5fb  docker.io/library/alpine:latest  ls /       12 minutes ago  Exited (0) 11 minutes ago          my_container

図10.10 コンテナ一覧の表示実行例


一覧表示により、コンテナ名やコンテナ ID を確認することができます。-a オプションを付けない場合は、動作中のコンテナのみ表示されます。 podman ps コマンドの詳細は --help オプションで確認できます。

[armadillo ~]# podman ps --help

図10.11 podman ps --help の実行例


10.3.2.3. コンテナを起動する

作成済みのコンテナを起動するためには podman start コマンドを実行します。

[armadillo ~]# podman start my_container
podman start my_container
[ 3119.081068] IPv6: ADDRCONF(NETDEV_CHANGE): vethe172e161: link becomes ready
[ 3119.088214] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
[ 3119.094812] cni-podman0: port 1(vethe172e161) entered blocking state
[ 3119.101231] cni-podman0: port 1(vethe172e161) entered disabled state
[ 3119.107745] device vethe172e161 entered promiscuous mode
[ 3119.113185] cni-podman0: port 1(vethe172e161) entered blocking state
[ 3119.119546] cni-podman0: port 1(vethe172e161) entered forwarding state
my_container
[ 3119.620731] cni-podman0: port 1(vethe172e161) entered disabled state
[ 3119.627696] device vethe172e161 left promiscuous mode
[ 3119.632762] cni-podman0: port 1(vethe172e161) entered disabled state

図10.12 コンテナを起動する実行例


-a オプションを与えると、コンテナ内で実行されたアプリケーションの出力を確認できます。

[armadillo ~]# podman start -a my_container
[ 3150.303962] IPv6: ADDRCONF(NETDEV_CHANGE): vetha9ef8f8e: link becomes ready
[ 3150.311106] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
[ 3150.317703] cni-podman0: port 1(vetha9ef8f8e) entered blocking state
[ 3150.324139] cni-podman0: port 1(vetha9ef8f8e) entered disabled state
[ 3150.330687] device vetha9ef8f8e entered promiscuous mode
[ 3150.336085] cni-podman0: port 1(vetha9ef8f8e) entered blocking state
[ 3150.342443] cni-podman0: port 1(vetha9ef8f8e) entered forwarding state
bin    etc    lib    mnt    proc   run    srv    tmp    var
dev    home   media  opt    root   sbin   sys    usr
[ 3150.804164] cni-podman0: port 1(vetha9ef8f8e) entered disabled state
[ 3150.811249] device vetha9ef8f8e left promiscuous mode
[ 3150.816349] cni-podman0: port 1(vetha9ef8f8e) entered disabled state

図10.13 コンテナを起動する実行例(a オプション付与)


ここで起動している my_container は、起動時に "ls /" を実行するようになっているので、その結果が出力されます。 podman start コマンドの詳細は --help オプションで確認できます。

[armadillo ~]# podman start --help

図10.14 podman start --help 実行例


10.3.2.4. コンテナを停止する

動作中のコンテナを停止するためには podman stop コマンドを実行します。

[armadillo ~]# podman stop my_container
my_container

図10.15 コンテナを停止する実行例


podman stop コマンドの詳細は --help オプションで確認できます。

[armadillo ~]# podman stop --help

図10.16 podman stop --help 実行例


10.3.2.5. コンテナの変更を保存する

コンテナに対して変更が行われた状態で、そのままコンテナを停止してしまうと変更が失なわれてしまいます。

変更を保存するには二つの方法があります。

  1. podman commit コマンドで保存する。

    [armadillo ~]# podman commit my_container image_name:latest
    Getting image source signatures
    Copying blob f4ff586c6680 skipped: already exists
    Copying blob 3ae0874b0177 skipped: already exists
    Copying blob ea59ffe27343 done
    Copying config 9ca3c55246 done
    Writing manifest to image destination
    Storing signatures
    9ca3c55246eaac267a71731bad6bfe4b0124afcdd2b80c4f730c46aae17a88f3

    図10.17 my_containerを保存する例


    podman commitで保存する度に、変更が行なわれた差分が保存されます。 繰り返し差分を保存すると、イメージサイズが大きくなってしまいます。 ストレージ容量が不足する場合は、ベースとなるOSのイメージから作り直してください。

  2. ボリュームを使用する。

    podman_startadd_volumes コマンドでコンテナに Armadillo Base OS のディレクトリをコンテナで使うことができます。 保存するデータの性質によって、保存先を選択してください。 . /var/app/volumes/myvolume: アップデートした場合はコピーされません。 ログやデータベースなど、アプリケーションが作成し続けるようなデータの保存に向いています。 . myvolume/var/app/rollback/volumes/myvolume: アップデートの際にコピーしてアップデートを行うので、アップデート中でも安全に使いつづけます。 アプリケーションと一緒にアップデートするようなデータの保存に向いています。

    [ティップ]

    コンテナを前のバージョンに戻した場合(ロールバック)、/var/app/rollback/volumes/ のデータの前のバージョンに戻ります。

    その為、アプリケーションのバージョンに依存するようなデータは /var/app/rollback/volumes/ に入れることを推奨します。

    mkswuswdesc_files (--extra-os 無し)と podman_start` の add_volumes では、相対パスはそのディレクトリをベースにします。 /var/app/rollback/volumes/myvolumemyvolume で簡潔に指定できます。

    [警告]

    Copy-on-Write (CoW) について。

    この二つの volumes ディレクトリは btrfs と呼ばれるファイルシステムに保存されています。 btrfs ではデータは Copy on Write(CoW)を使ってデータ完全性を保証しますが、その保証にはコストがあります。

    数百 MB のファイルに小さな変更を頻繁に行う場合 CoW を無効化することを推奨します。 CoW を無効化されたファイルにチェックサムが入らなくなりますので、極端な場合以外に残してください。

    [armadillo ~]# cd /var/app/volumes/
    [armadillo /var/app/volumes]# mkdir database
    [armadillo /var/app/volumes]# chattr +C database 1
    [armadillo /var/app/volumes]# echo example data > database/example
    [armadillo /var/app/volumes]# lsattr database/ 2
    ---------------C---- database/example

    図10.18 chattr によって copy-on-write を無効化する例


    1

    chattr +C でディレクトリに NoCow を設定します。これから作成されるファイルが NoCow で作成されます。すでに存在していたファイルに影響ないのでご注意ください。

    2

    lsattr 確認します。リストの C の字があればファイルが「no cow」です。

10.3.2.6. コンテナの自動作成やアップデート

podman run, podman commitでコンテナを作成できますが、定期的にアップデートをする際には コンテナの作成やアップデートを自動化できると便利です。

これを実現するために、Dockerfileとpodman buildを使います。この手順はArmadilloで実行可能です。

  1. イメージを docker.io のイメージから作りなおします

    [armadillo ~/podman-build]# cat Dockerfile
    FROM docker.io/arm32v7/alpine:latest
    
    # update & install dependencies (example: usbutils)
    RUN apk upgrade && apk add usbutils && rm -f /var/cache/apk/*
    
    # copy our application and set it to run on start
    COPY my_application /my_application
    ENTRYPOINT /my_application
    
    [armadillo ~/podman-build]# podman build -t my_image:1 -t my_image:latest .
    STEP 1: FROM docker.io/arm32v7/alpine:latest
    STEP 2: RUN apk upgrade && apk add usbutils && rm -f /var/cache/apk/*
    --> 234bf79175e
    STEP 3: COPY my_application /my_application
    --> 05ab31bb278
    STEP 4: ENTRYPOINT /my_application
    STEP 5: COMMIT my_image:latest
    --> 590e3ba6d55
    Successfully tagged localhost/my_image:1
    Successfully tagged localhost/my_image:latest
    590e3ba6d55f3e29bdef158d7283e9c4f7515567b2d3f978cfab2510dc02376b
    
    [armadillo ~/podman-build]# podman save my_image:latest -o my_image_1.tar

    図10.19 podman buildの実行例


  2. イメージを前のバージョンからアップデートします

    [armadillo podman-build-update]# cat Dockerfile
    FROM localhost/my_image:latest
    
    # update OS packages
    RUN apk upgrade --no-cache
    
    # update application
    COPY my_application /my_application
    $ podman build -t my_image:2 -t my_image:latest .
    STEP 1: FROM localhost/my_image:latest
    STEP 2: RUN apk upgrade --no-cache
    --> cf1dc0d7296
    STEP 3: COPY my_application /my_application
    STEP 4: COMMIT my_image:latest
    --> 9e9d9366072
    Successfully tagged localhost/my_image:2
    Successfully tagged localhost/my_image:latest
    9e9d9366072751007b2e70544d76c46b95a7a5a02df658ef0fa3f7dcccf8850a
    
    [armadillo podman-build-update]# podman save -o my_image_2.tar my_image:2

    図10.20 podman buildでのアップデートの実行例


    この場合、 podman_partial_image コマンドを使って、差分だけをインストールすることもできます。

    [armadillo podman-build-update]# podman_partial_image -b my_image:1 \
            -o my_image_2_partial.tar my_image:2
    
    [armadillo podman-build-update]# ls -lh
    -rw-r--r-- 1 root root   88 Dec 21 15:24 Dockerfile
    -rw-r--r-- 1 root root 9.4M Dec 21 15:26 my_image_1.tar
    -rw-r--r-- 1 root root 9.4M Dec 21 15:26 my_image_2.tar
    -rw-r--r-- 1 root root  51K Dec 21 15:26 my_image_2_partial.tar

作成した .tar アーカイブは 「mkswu の desc ファイル」swdesc_embed_containerswdesc_usb_container で使えます。

10.3.2.7. コンテナを削除する

作成済みコンテナを削除する場合は podman rm コマンドを実行します。

[armadillo ~]# podman rm my_container
d6de5881b5fb973227b84d1d74abf269ac3183aad7e18b7a9d85208632641d94
[armadillo ~]# podman ps -a
CONTAINER ID  IMAGE                            COMMAND    CREATED         STATUS                    PORTS    NAMES

図10.21 コンテナを削除する実行例


podman ps コマンドの出力結果より、コンテナが削除されていることが確認できます。 podman rm コマンドの詳細は --help オプションで確認できます。

[armadillo ~]# podman rm --help

図10.22 $ podman rm --help 実行例


10.3.2.8. イメージを削除する

podmanのイメージを削除するには podman rmi コマンドを実行します。 イメージを削除するためには、そのイメージから作成したコンテナを先に削除しておく必要があります。 podman rmi コマンドにはイメージ ID を指定する必要があるため、podman images コマンドで確認します。

[armadillo ~]# podman rm my_container
[armadillo ~]# podman images
REPOSITORY                TAG        IMAGE ID      CREATED      SIZE
docker.io/library/alpine  latest     02480aeb44d7  2 weeks ago  5.62 MB
[armadillo ~]# podman rmi 02480aeb44d7
Untagged: docker.io/library/alpine:latest
Deleted: 02480aeb44d78f1a44b8791af7edf7d6e1b18707397a1dfb3ff4f21c5ce4a44f
[armadillo ~]# podman images
REPOSITORY                TAG        IMAGE ID      CREATED      SIZE

図10.23 イメージを削除する実行例


podman images コマンドの出力結果より、コンテナが削除されていることが確認できます。 podman rmi コマンドの詳細は --help オプションで確認できます。

[armadillo ~]# podman rmi --help

図10.24 podman rmi --help 実行例


[ティップ]

SWU で転送されたイメージは podman images で Read-Only として表示されますので、 podman rmi を実行するとエラーとなります。 その場合は abos-ctrl podman-rw rmi をご使用ください。 abos-ctrl podman-rw については 「イメージを eMMC に保存する方法」 を参照してください。

[armadillo ~]# podman images
REPOSITORY                TAG        IMAGE ID      CREATED      SIZE       R/O
docker.io/library/alpine  latest     02480aeb44d7  2 weeks ago  5.62 MB    true
[armadillo ~]# podman rmi docker.io/alpine
Error: cannot remove read-only image "02480aeb44d78f1a44b8791af7edf7d6e1b18707397a1dfb3ff4f21c5ce4a44f"
[armadillo ~]# abos-ctrl podman-rw rmi docker.io/alpine
Untagged: docker.io/library/alpine:latest
Deleted: 02480aeb44d78f1a44b8791af7edf7d6e1b18707397a1dfb3ff4f21c5ce4a44f
[armadillo ~]# podman images
REPOSITORY                TAG        IMAGE ID      CREATED      SIZE

図10.25 Read-Onlyのイメージを削除する実行例


10.3.2.9. 実行中のコンテナに接続する

実行中のコンテナに接続し、コンテナ内で指定したコマンドを実行するには podman exec コマンドを実行します。 podman exec コマンドでコンテナ内部のシェルを起動すると、コンテナ内部を操作できるようになります。ここでは、sleep infinity コマンドを 実行して待ち続けるだけのコンテナを作成し、そのコンテナに対して podman exec コマンドでシェルを起動する例を示します。

[armadillo ~]# vi /etc/atmark/containers/sleep_container.conf
set_image docker.io/alpine
set_command sleep infinity
add_args --init
[armadillo ~]# podman_start sleep_container
Starting 'test'
f62e7a666d7156d261905c8406c72fc271534fa29e69771c76f4f6660a2da41a
[armadillo ~]# podman exec -it sleep_container sh
[container ~]# ps
PID   USER     TIME  COMMAND
    1 root      0:00 /run/podman-init -- sleep infinity
    2 root      0:00 sleep infinity
    3 root      0:00 sh
    4 root      0:00 ps

図10.26 コンテナ内部のシェルを起動する実行例


podman_start コマンドでコンテナを作成し、その後作成したコンテナ内で sh を実行しています。 sh を実行すると、コンテナ内のプロンプトが表示されコンテナ内部を操作できるようになります。 上記ではコンテナ内で、ps コマンドを実行しています。コンテナ作成時に実行した sleeppodman exec で実行した sh がプロセスとして存在していることが確認できます。

コンテナ内のシェルから抜ける時は exit コマンドを実行します。

[container ~]# exit

図10.27 コンテナ内部のシェルから抜ける実行例


podman exec コマンドから抜けても、コンテナがまだ実行中です。コンテナを停止したい場合は podman stop sleep_containerpodman kill sleep_container で停止して podman rm sleep_container でそのコンテナを削除してください。 podman exec コマンドの詳細は --help オプションで確認できます。

[armadillo ~]# podman exec --help

図10.28 podman exec --help 実行例


10.3.2.10. コンテナ間で通信をする

複数のコンテナを実行している環境で、それらのコンテナ間で通信を行う方法を示します。 これにより、例えば SQL サーバを実行しているコンテナに対し別のコンテナから接続するといった 使い方ができます。

コンテナには作成した時点でローカル IP アドレスが割り当てられるので、コンテナの名前かその IP アドレスで通信を行うことができます。

準備として、2 つのコンテナを作成します。

[armadillo ~]# vi /etc/atmark/containers/my_container_1.conf
set_image docker.io/alpine
set_command sleep infinity
[armadillo ~]# vi /etc/atmark/containers/my_container_2.conf
set_image docker.io/alpine
set_command sleep infinity
[armadillo ~]# podman_start my_container_1 my_container_2
Starting 'my_container_1'
cbe0802f4e2d2fec88f4e300dabeba3b48865359dc02cbd99375b1b38c2c28eb
Starting 'my_container_2'

図10.29 コンテナを作成する実行例


コンテナに割り当てられた IP アドレスを確認するには podman inspect コマンドを実行します。

[armadillo ~]# podman inspect --format='{{.NetworkSettings.IPAddress}}' my_container_1
10.88.0.108
[armadillo ~]# podman inspect --format='{{.NetworkSettings.IPAddress}}' my_container_2
10.88.0.109

図10.30 コンテナの IP アドレスを確認する実行例


これらの IP アドレスを使って、一方のコンテナからもう一方のコンテナへ対し ping コマンドで疎通確認を行うことができます。

[armadillo ~]# podman exec -it my_container_1 sh
[container ~]# ping -c 2 my_container_2
PING my_container_2 (10.88.0.109): 56 data bytes
64 bytes from 10.88.0.109: seq=0 ttl=42 time=0.144 ms
64 bytes from 10.88.0.109: seq=1 ttl=42 time=0.210 ms
--- my_container_2 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.144/0.177/0.210 ms
[container ~]# ping -c 2 10.88.0.109
PING 10.88.0.109 (10.88.0.109): 56 data bytes
64 bytes from 10.88.0.109: seq=0 ttl=42 time=0.140 ms
64 bytes from 10.88.0.109: seq=1 ttl=42 time=0.138 ms
--- 10.88.0.109 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.138/0.139/0.140 ms

図10.31 ping コマンドによるコンテナ間の疎通確認実行例


このように、my_container_1(10.88.0.108) から my_container_2(10.88.0.109) への通信が確認できます。

10.3.2.11. 開発時に有用な—privilegedオプション

コンテナに、全権限と全てのデバイスへのアクセスを許可するオプション --privileged があります。このオプションを利用すると、コンテナに与えるべき最小の権限を洗い出す必要が無いため、開発時に有用です。

実運用の際、このオプションを利用することはセキュリティー上問題がある為、開発時にのみご利用ください。コンテナに必要な最低限の権限を与えることをおすすめします。

10.3.2.12. GPIO を扱う

コンテナ内で動作するアプリケーションから GPIO を扱うためには、Podman のイメージからコンテナを作成する際にホスト OS 側の デバイスファイル /dev/gpiochipN を渡す必要があります。以下は、/dev/gpiochip2 を渡して alpine イメージからコンテナを作成する例です。 /dev/gpiochipN を渡すと、GPION+1 を操作することができます。

[armadillo ~]# vi /etc/atmark/containers/gpio_example
set_image docker.io/alpine
set_command sleep infinity
add_devices /dev/gpiochip2
[armadillo ~]# podman_start gpio_example
Starting 'gpio_example'
956a0fecc48d5ea1210069910f7bb48b9e90b2dadb12895064d9776dae0360b5

図10.32 GPIO を扱うためのコンテナ作成例


コンテナ内に入ってコマンドで GPIO を操作する例を以下に示します。この例では GPIO3_IO21 を操作しています。

[armadillo ~]# podman exec -it gpio_example sh
[container ~]# apk upgrade
[container ~]# apk add libgpiod
[container ~]# gpioget gpiochip2 21 1
0 2
[container ~]# gpioset gpiochip2 21=1 3

図10.33 コンテナ内からコマンドで GPIO を操作する例


1

GPIO 番号 21 の値を取得します。

2

取得した値を表示します。

3

GPIO 番号 21 に 1(High) を設定します。

他にも、gpiodetect コマンドで認識している gpiochip をリスト表示できます。 以下の例では、コンテナを作成する際に渡した /dev/gpiochip2 が認識されていることが確認できます。

[container ~]# gpiodetect
gpiochip2 [30220000.gpio] (32 lines)

図10.34 gpiodetect コマンドの実行


gpioinfo コマンドでは、指定した gpiochip の詳細な情報を表示することができます。

[container ~]# gpioinfo gpiochip2
gpiochip2 - 32 lines:
        line   0:      unnamed          "?"  output  active-high [used]
        line   1:      unnamed       unused   input  active-High
        line   2:      unnamed       unused   input  active-high
        line   3:      unnamed       unused   input  active-high
        line   4:      unnamed       unused   input  active-high
        line   5:      unnamed       unused   input  active-high
        line   6:      unnamed       unused   input  active-high
        line   7:      unnamed       unused   input  active-high
        line   8:      unnamed       unused   input  active-high
        line   9:      unnamed       unused   input  active-high
        line  10:      unnamed       unused   input  active-high
        line  11:      unnamed       unused   input  active-high
        line  12:      unnamed       unused   input  active-high
        line  13:      unnamed       unused   input  active-high
        line  14:      unnamed       unused   input  active-high
        line  15:      unnamed       unused   input  active-high
        line  16:      unnamed       unused   input  active-high
        line  17:      unnamed       unused   input  active-high
        line  18:      unnamed       unused   input  active-high
        line  19:      unnamed       unused   input  active-high
        line  20:      unnamed       unused   input  active-high
        line  21:      unnamed       unused   input  active-high
        line  22:      unnamed       unused   input  active-high
        line  23:      unnamed       unused   input  active-high
        line  24:      unnamed       unused   input  active-high
        line  25:      unnamed       unused   input  active-high
        line  26:      unnamed       unused   input  active-high
        line  27:      unnamed       unused   input  active-high
        line  28:      unnamed       unused   input  active-high
        line  29:      unnamed       unused   input  active-high
        line  30:      unnamed       unused   input  active-high
        line  31:      unnamed       unused   input  active-high

図10.35 gpioinfo コマンドの実行


C 言語プログラムから操作する場合は、GPIO 操作ライブラリである libgpiod を使用することができます。

10.3.2.13. I2C を扱う

コンテナ内で動作するアプリケーションから I2C を扱うためには、Podman のイメージからコンテナを作成する際にホスト OS 側の デバイスファイル /dev/i2c-N を渡す必要があります。以下は、/dev/i2c-1 を渡して alpine イメージからコンテナを作成する例です。

[armadillo ~]# vi /etc/atmark/containers/i2c_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_devices /dev/i2c-1
[armadillo ~]# podman_start i2c_example
Starting 'i2c_example'
efa1eb129c1f036a709755f0d53b21a0f2a39307ecae32b24aac98c0b6567bf0

図10.36 I2C を扱うためのコンテナ作成例


コンテナ内に入り、i2c-tools に含まれる i2cdetect コマンドを使ってスレーブアドレスを確認することができます。

[armadillo ~]# podman exec -it i2c_example sh
[container ~]# apk upgrade
[container ~]# apk add i2c-tools
[container ~]# i2cdetect -y 1
     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
00:                         -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- UU -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- UU -- -- --
50: UU -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --
70: -- -- 72 -- -- -- -- --

図10.37 i2cdetect コマンドによる確認例


10.3.2.14. シリアルインターフェースを扱う

コンテナ内で動作するアプリケーションから RS-232C や RS-485 などのシリアル通信を行うためには、 Podman のイメージからコンテナを作成する際にホスト OS 側のデバイスファイル /dev/ttymxcN を渡す必要があります。 以下は、/dev/ttymxc0 を渡して alpine イメージからコンテナを作成する例です。

[armadillo ~]# vi /etc/atmark/containers/serial_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_devices /dev/ttymxc0
[armadillo ~]# podman_start serial_example
Starting 'serial_example'
3999f09d51253371cacffd68967c90fdd5250770888a82f59d7810b54fcc873e

図10.38 シリアルインターフェースを扱うためのコンテナ作成例


コンテナ内に入り、setserial コマンドを使って現在の設定を確認することができます。

[armadillo ~]# podman exec -it serial_example sh
[container ~]# setserial -a /dev/ttymxc0
/dev/ttymxc0, Line 0, UART: undefined, Port: 0x0000, IRQ: 29
        Baud_base: 5000000, close_delay: 50, divisor: 0
        closing_wait: 3000
        Flags: spd_normal

図10.39 setserial コマンドによるシリアルインターフェイス設定の確認例


10.3.2.15. USB を扱う

コンテナ内で動作するアプリケーションから USB 接続のデバイスを扱うための方法について示します。

  • USB シリアルデバイスを扱う

USB シリアルデバイスをコンテナ内から扱う場合には、Podman のイメージからコンテナを作成する際に ホスト OS 側の /dev/ttyUSBN を渡す必要があります。 以下は、 /dev/ttyUSB0 を渡して alpine イメージからコンテナを作成する例です。

[armadillo ~]# podman run -itd --name=usb_example --device=/dev/ttyUSB0 docker.io/alpine /bin/sh

図10.40 USB シリアルデバイスを扱うためのコンテナ作成例


コンテナ内に入り、setserial コマンドを使って現在の設定を確認することができます。

[armadillo ~]# podman exec -it usb_example /bin/sh
[container ~]# setserial -a /dev/ttyUSB0
/dev/ttyUSB0, Line 0, UART: unknown, Port: 0x0000, IRQ: 0
        Baud_base: 24000000, close_delay: 0, divisor: 0
        closing_wait: infinite
        Flags: spd_normal

図10.41 setserial コマンドによるUSBシリアルデバイス設定の確認例


  • USB カメラを扱う

USB カメラをコンテナ内から扱う場合には、Podman のイメージからコンテナを作成する際に ホスト OS 側の /dev/videoN を渡す必要があります。 以下は、 /dev/video3 を渡して alpine イメージからコンテナを作成する例です。

[armadillo ~]# vi /etc/atmark/containers/usbcam_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_devices /dev/video3
[armadillo ~]# podman_start usbcam_example
Starting 'usbcam_example'
ffe06090b45826cc0b1c7710e9e850ba9521d36b70de4288d0dfe1fe91a35632
[armadillo ~]# podman exec -it usbcam_example sh
[container ~]# ls /dev/video3
/dev/video3

図10.42 USB カメラを扱うためのコンテナ作成例


GStreamer などのマルチメディアフレームワークと組み合わせることで、USB カメラからの映像のキャプチャが可能となります。

  • USB メモリを扱う

ここでは、USB メモリを扱う方法について 2 つの例を示します。

  • ホスト OS 側でマウントした USB メモリをコンテナから扱う

あらかじめホスト OS 側でマウントしてある USB メモリをコンテナから扱う場合には、Podman のイメージから コンテナを作成する際にホスト OS 側で USB メモリをマウントしてるディレクトリを渡す必要があります。

[armadillo ~]# mount -t vfat /dev/sda1 /mnt
[armadillo ~]# echo test >> /mnt/sample.txt
[armadillo ~]# ls /mnt
sample.txt

図10.43 USB メモリをホスト OS 側でマウントする例


上記の例では、USB メモリを /mnt にマウントしました。以下は、 /mnt を渡して alpine イメージからコンテナを作成する例です。

[armadillo ~]# vi /etc/atmark/containers/usbmem_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_volumes /mnt
[armadillo ~]# podman_start usbmem_example
Starting 'usbmem_example'
ef77d4bfd5b04f3b8b5ddcb5bfac321304fa64219a4b88c3130e45e5a14e1b3e

図10.44 ホスト OS 側でマウント済みの USB メモリを扱うためのコンテナ作成例


ホスト OS 側の /mnt ディレクトリをコンテナ内の /mnt にマウントしています。 これにより、コンテナ内からも /mnt ディレクトリを通して USB メモリを扱うことができます。

[armadillo ~]# podman exec -it usbmem_example sh
[container ~]# ls /mnt
sample.txt
[container ~]# cat /mnt/sample.txt
test

図10.45 USB メモリに保存されているデータの確認例


  • USB メモリをコンテナ内からマウントする

USB メモリをコンテナ内からマウントして扱う場合には、Podman のイメージからコンテナを作成する際に ホスト OS 側の /dev ディレクトリを渡すと同時に、適切な権限も渡す必要があります。 以下は、 /dev を渡して alpine イメージからコンテナを作成する例です。権限として SYS_ADMIN と SYS_RAWIO も渡しています。

[armadillo ~]# vi /etc/atmark/containers/usbmem_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_args --cap-add=SYS_ADMIN
add_devices /dev/sda1
[armadillo ~]# podman_start usbmem_example
Starting 'usbmem_example'
387a2256530e9b35b5361ca681a99fba8f46d78b6a6cb8ecd60096246b9198a8

図10.46 USB メモリをマウントするためのコンテナ作成例


コンテナ内に入り、mount コマンドで USB メモリを /mnt にマウントし、保存されているデータを確認することができます。

[armadillo ~]# podman exec -it usbmem_example sh
[container ~]# mount /dev/sda1 /mnt
[container ~]# ls /mnt
sample.txt
[container ~]# cat /mnt/sample.txt
test

図10.47 コンテナ内から USB メモリをマウントする例


  • USB デバイスのホットプラグに対応する

通常、コンテナ内から USB デバイスを扱うためには、あらかじめ Armadillo-IoT ゲートウェイ A6E 本体に USB デバイスを接続した状態で、コンテナを起動する必要があります。 コンテナ起動後に USB デバイスを接続して認識させるためには、/dev を volume としてコンテナ内にマウントする必要があります。 以下は、 volume として /dev を渡して alpine イメージからコンテナを作成する例です。イベントの通知のために --net=host も渡す必要があります。

[armadillo ~]# vi /etc/atmark/containers/usbhotplug_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_volumes /dev
set_network host
[armadillo ~]# podman_start usbhotplug_example
Starting 'usbhotplug_example'
54b83ebf49db906af38501ff1fcb85eee8258a31d37ca5d0eed7ff6f9ed5b72c

図10.48 USB デバイスのホットプラグに対応する例


10.3.2.16. RTC を扱う

コンテナ内から RTC を扱うためには、Podman のイメージからコンテナを作成する際にホスト OS 側の デバイスファイル /dev/rtcN を渡すと同時に、RTC への時刻の設定を行うための権限も渡す必要があります。 以下は、/dev/rtc0 を渡して alpine イメージからコンテナを作成する例です。権限として SYS_TIME も渡しています。

[armadillo ~]# vi /etc/atmark/containers/rtc_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_args --cap-add=SYS_TIME
add_devices /dev/rtc0
[armadillo ~]# podman_start rtc_example
Starting 'rtc_example'
025209e0d96f43c2911239a8397b7002c3eaab057e031d8abb765df5707d75bd

図10.49 RTC を扱うためのコンテナ作成例


コンテナ内に入り、hwclock コマンドで RTC の時刻表示と設定ができます。

[armadillo ~]# podman exec -it rtc_example sh
[container ~]# hwclock 1
Thu Feb 18 05:14:37 2021  0.000000 seconds
[container ~]# date --set "2021-04-01 09:00:00" 2
Thu Apr  1 09:00:00 UTC 2021
[container ~]# hwclock --systohc 3
[container ~]# hwclock 4
Thu Apr  1 09:00:28 2021  0.000000 seconds

図10.50 hwclock コマンドによるRTCの時刻表示と設定例


1

RTC に設定されている現在時刻を表示します。

2

システム時刻を 2021 年 4 月 1 日 9 時 0 分 0 秒に設定します。

3

システム時刻を RTC に反映させます。

4

RTC に設定されている時刻が変更されていることを確認します。

10.3.2.17. 音声出力を行う

Armadillo-IoT ゲートウェイ A6E に接続したスピーカーなどの音声出力デバイスへコンテナ内から音声を出力するためには、 Podman のイメージからコンテナを作成する際にホスト OS 側のデバイスファイル /dev/snd を渡す必要があります。 以下は、/dev/snd を渡して debian イメージからコンテナを作成する例です。

[armadillo ~]# vi /etc/atmark/containers/snd_example.conf
set_image localhost/at-debian-image
set_command sleep infinity
add_devices /dev/snd
[armadillo ~]# podman_start snd_example
Starting 'snd_example'
b921856b504e9f0a3de2532485d7bd9adb1ff63c2e10bfdaccd1153fd36a3c1d

図10.51 音声出力を行うためのコンテナ作成例


コンテナ内に入り、alsa-utils などのソフトウェアで音声出力を行えます。

[armadillo ~]# podman exec -it snd_example /bin/bash
[container ~]# apt update && apt upgrade
[container ~]# apt install alsa-utils 1
[container ~]# /etc/init.d/alsa-utils start 2
[container ~]# aplay -D hw:N,M [ファイル名] 3

図10.52 alsa-utils による音声出力を行う例


1

alsa-utils をインストールします。

2

alsa-utils を起動します。

3

指定したファイル名の音声ファイルを再生します。

aplay の引数にある、M は音声を出力したい CARD 番号、N はデバイス番号を表しています。 CARD 番号とデバイス番号は、aplay コマンドに -l オプションを与えることで確認できます。

10.3.2.18. ユーザースイッチのイベントを取得する

Armadillo-IoT ゲートウェイ A6E にはユーザースイッチが実装されています。これらのスイッチのプッシュ/リリースイベントを取得するためには、 Podman のイメージからコンテナを作成する際にホスト OS 側の /dev/input ディレクトリを渡す必要があります。 以下は、/dev/input を渡して alpine イメージからコンテナを作成する例です。ここで渡された /dev/input ディレクトリは コンテナ内の /dev/input にマウントされます。

[armadillo ~]# vi /etc/atmark/containers/sw_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_devices /dev/input
[armadillo ~]# podman_start sw_example
Starting 'sw_example'
c0cd8b801883266197a3c20552b0e8b6c7dd473bb0b24e05bf3ecdb581c822b9

図10.53 ユーザースイッチのイベントを取得するためのコンテナ作成例


コンテナ内に入り、evtest コマンドでイベントを確認できます。

[armadillo ~]# podman exec -it sw_example sh
[container ~]# apk upgrade
[container ~]# apk add evtest
[container ~]# evtest /dev/input/event1
Input driver version is 1.0.1
Input device ID: bus 0x19 vendor 0x1 product 0x1 version 0x100
Input device name: "gpio-keys"
Supported events:
  Event type 0 (EV_SYN)
  Event type 1 (EV_KEY)
    Event code 28 (KEY_ENTER)
Properties:
Testing ... (interrupt to exit)
Event: time 1612849227.554456, type 1 (EV_KEY), code 28 (KEY_ENTER), value 1  1
Event: time 1612849227.554456, -------------- SYN_REPORT ------------
Event: time 1612849229.894444, type 1 (EV_KEY), code 28 (KEY_ENTER), value 0  2
Event: time 1612849229.894444, -------------- SYN_REPORT ------------

図10.54 evtest コマンドによる確認例


1

SW1のボタン プッシュ イベントを検出したときの表示

2

SW1のボタン リリース イベントを検出したときの表示

10.3.2.19. LED を扱う

Armadillo-IoT ゲートウェイ A6E には LED が実装されています。これらの LED を扱うためには、 Podman のイメージからコンテナを作成する際にホスト OS 側の /sys ディレクトリを渡す必要があります。 以下は、/sys を渡して alpine イメージからコンテナを作成する例です。ここで渡された /sys ディレクトリは コンテナ内の /sys にマウントされます。

[armadillo ~]# vi /etc/atmark/containers/led_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_volumes /sys
[armadillo ~]# podman_start led_example
Starting 'led_example'
c770f76d7714f4cceb1229be2240382bded236c2c51bb6b866bc0098c2cb987a

図10.55 LED を扱うためのコンテナ作成例


コンテナ内に入り、brightness ファイルに値を書き込むことで LED の点灯/消灯を行うことができます。 0 を書き込むと消灯、0 以外の値 (1〜255) を書き込むと点灯します。

[armadillo ~]# podman exec -it led_example sh
[container ~]# echo 0 > /sys/class/leds/app/brightness
[container ~]# echo 1 > /sys/class/leds/app/brightness

図10.56 LED の点灯/消灯の実行例


10.3.3. 近距離通信を行う

この章では、コンテナ内から近距離通信デバイスを扱う方法について示します。

10.3.3.1. Bluetooth デバイスを扱う

コンテナ内から Bluetooth デバイスを扱うためには、Podman のイメージからコンテナを作成する際にホスト OS 側の デバイスファイル /dev/ttymxcN を渡すと同時にネットワークとして host を、権限として NET_ADMIN を渡す必要があります。 /dev/ttymxcN は Bluetooth 通信で使用するように設定したシリアルデバイスを指定してください。 以下は、/dev/ttymxc0 を渡して alpine イメージからコンテナを作成する例です。

[armadillo ~]# vi /etc/atmark/containers/bt_example.conf
set_image docker.io/alpine
set_command sleep infinity
set_network host
add_devices /dev/ttymxc0
add_args --cap-add=NET_ADMIN
[armadillo ~]# podman_start bt_example
Starting 'bt_example'
45fe1eb6b25529f0c84cd4b97ca1aef8451785fc9a87a67d54873c1ed45b70a4

図10.57 Bluetooth デバイスを扱うためのコンテナ作成例


コンテナ内で必要なソフトウェアをインストールして、Bluetooth を起動します。 btattach コマンドの引数にはコンテナ作成時に渡した ttymxc を設定してください。

[armadillo ~]# podman exec -it bt_example sh
[container ~]# apk upgrade
[container ~]# apk add bluez dbus
[container ~]# /usr/bin/dbus-daemon --system
[container ~]# /usr/lib/bluetooth/bluetoothd &
[container ~]# btattach -B /dev/ttymxc0 -S 115200 &

図10.58 Bluetooth を起動する実行例


これにより、bluetoothctl で Bluetooth 機器のスキャンやペアリングなどが行えるようになります。 以下に、bluetoothctl コマンドで周辺機器をスキャンしてペアリングを行う例を示します。

[container ~]# bluetoothctl
Agent registerd
[..CHG..] Controller XX:XX:XX:XX:XX:XX Pairable: yes
[bluetooth]# power on 1
Changing power on succeeded
[..CHG..] Controller XX:XX:XX:XX:XX:XX Powered: yes
[bluetooth]# scan on 2
Discovery started
[..CHG..] Controller XX:XX:XX:XX:XX:XX Discovering: yes
[..NEW..] Device AA:AA:AA:AA:AA:AA AA-AA-AA-AA-AA-AA
[..NEW..] Device BB:BB:BB:BB:BB:BB BB-BB-BB-BB-BB-BB
[..NEW..] Device CC:CC:CC:CC:CC:CC CC-CC-CC-CC-CC-CC
[..NEW..] Device DD:DD:DD:DD:DD:DD DD-DD-DD-DD-DD-DD
[..NEW..] Device EE:EE:EE:EE:EE:EE EE-EE-EE-EE-EE-EE
[bluetooth]# pair AA:AA:AA:AA:AA:AA 3
[bluetooth]# exit 4
[container ~]#

図10.59 bluetoothctl コマンドによるスキャンとペアリングの例


1

コントローラを起動します。

2

周辺機器をスキャンします。

3

ペアリングしたい機器の MAC アドレスを指定してペアリングします。

4

exit で bluetoothctl のプロンプトを終了します。

10.3.3.2. Wi-SUN デバイスを扱う

ここでは、Wi-SUN デバイスが UART で接続されている場合の例を示します。 この場合、コンテナ内で動作するアプリケーションから Wi-SUN デバイスで通信を行うためには、 Podman のイメージからコンテナを作成する際にホスト OS 側のデバイスファイル /dev/ttymxcN のうち、 Wi-SUN と対応するものを渡す必要があります。 以下は、/dev/ttymxc0 を渡して alpine イメージからコンテナを作成する例です。

[armadillo ~]# vi /etc/atmark/containers/wisun_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_devices /dev/ttymxc0
[armadillo ~]# podman_start wisun_example
Starting 'wisun_example'
ef9a5a2f7eee4236cb28c1fbf5090a6f0db9d6dfe7f3a34573867e0833dd3122
[armadillo ~]# podman exec -it wisun_example sh
[container ~]# ls /dev/ttymxc0
/dev/ttymxc0

図10.60 Wi-SUN デバイスを扱うためのコンテナ作成例


コンテナ内から、/dev/ttymxc0 を使って Wi-SUN データの送受信ができるようになります。

10.3.3.3. EnOcean デバイスを扱う

ここでは、EnOcean デバイスが UART で接続されている場合の例を示します。 この場合、コンテナ内で動作するアプリケーションから EnOcean デバイスで通信を行うためには、 Podman のイメージからコンテナを作成する際にホスト OS 側のデバイスファイル /dev/ttymxcN のうち、 EnOcean と対応するものを渡す必要があります。 以下は、/dev/ttymxc0 を渡して alpine イメージからコンテナを作成する例です。

[armadillo ~]# vi /etc/atmark/containers/enocean_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_deivces /dev/ttymxc0
[armadillo ~]# podman_start enocean_example
Starting 'enocean_example'
a808b491a100f9078d8c72a7b36966d9182614f3657fe054fb8d7f87b0d4b31c
[armadillo ~]# podman exec -it enocean_example sh
[container ~]# ls /dev/ttymxc0
/dev/ttymxc0

図10.61 EnOcean デバイスを扱うためのコンテナ作成例


コンテナ内から、/dev/ttymxc0 を使って EnOcean データの送受信ができるようになります。

10.3.4. ネットワークを扱う

この章では、コンテナ内のネットワークを扱う方法について示します。

10.3.4.1. コンテナの IP アドレスを確認する

基本的にコンテナの IP アドレスは Podman イメージからコンテナを作成したときに自動的に割り振られます。 コンテナに割り振られている IP アドレスはホスト OS 側からは podman inspect コマンドを用いて、以下のように確認することができます。

[armadillo ~]# vi /etc/atmark/containers/net_example.conf
set_image docker.io/alpine
set_command sleep infinity
[armadillo ~]# podman_start net_example
Starting 'net_example'
48ae479af65445674323567c17c5418dd4624292351e061bd2bd8a0add4cf150
[armadillo ~]# podman inspect --format '{{ .NetworkSettings.IPAddress }}' net_example
10.88.0.17

図10.62 コンテナの IP アドレス確認例


コンテナ内の ip コマンドを用いて確認することもできます。

[armadillo ~]# podman exec net_example ip addr show eth0
3: eth0@if8: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue state UP
    link/ether xx:xx:xx:xx:xx:xx brd ff:ff:ff:ff:ff:ff
    inet 10.88.0.17/16 brd 10.88.255.255 scope global eth0
       valid_lft forever preferred_lft forever
    inet6 fe80::40e5:98ff:feec:4b17/64 scope link
       valid_lft forever preferred_lft forever

図10.63 ip コマンドを用いたコンテナの IP アドレス確認例


10.3.4.2. コンテナに固定 IP アドレスを設定する

[警告]

podman はデフォルトで 10.88.0.0/16 を使います。

他に使用しているIPアドレスと被った場合等はコンテナに別のIPアドレスを設定してください。

コンテナに固定 IP アドレスを設定するためには、最初にユーザ定義のネットワークを作成する必要があります。 以下に 192.168.1.0/24 にユーザ定義のネットワークを作成する例を示します。

[armadillo ~]# vi /etc/atmark/containers/my_network.conf
set_type network
set_subnet 192.168.1.0/24
[armadillo ~]# podman_start my_network
Creating network 'my_network'
my_network

図10.64 ユーザ定義のネットワーク作成例


コンテナを作成する際に、上記で作成したネットワークと設定したい IP アドレスを渡すことで、 コンテナの IP アドレスを固定することができます。 以下の例では、IPアドレスを 192.168.1.10 に固定します。

[armadillo ~]# vi /etc/atmark/containers/network_example.conf
set_image docker.io/alpine
set_command sleep infinity
set_network my_network
set_ip 192.168.1.10
[armadillo ~]# podman_start network_example
Starting 'network_example'
3ea8c9031bf833228908bd73d8929b1d543b189b436c218e0634e0d39409e100

図10.65 IP アドレス固定のコンテナ作成例


コンテナの IP アドレスが、192.168.1.10 に設定されていることが確認できます。

[armadillo ~]# podman inspect --format '{{ .NetworkSettings.Networks.my_network.IPAddress }}' network_example
192.168.1.10

図10.66 コンテナの IP アドレス確認例


10.3.5. サーバを構築する

この章では、コンテナ内で様々なサーバを構築する方法について示します。 この章で取り上げているサーバは alpine の apk コマンドでインストールすることが可能です。

10.3.5.1. HTTP サーバを構築する

ここでは、HTTP サーバとして Apache と lighttpd の 2 種類を使用する場合について説明します。

  • Apache を使用する

alpine イメージからコンテナを作成し、そのコンテナ内に Apache をインストールします。 コンテナ作成の際に、ホスト OS の 8080 番ポートをコンテナ内の 80 番ポートに転送する指定を行っています。

[armadillo ~]# vi /etc/atmark/containers/apache_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_ports 8080:80
[armadillo ~]# podman_start apache_example
Starting 'apache_example'
ea0a1ed9c2fe170a6db02e480300467510f4e844900efb35c7a24cc1a8653af2
[armadillo ~]# podman exec -it apache_example sh
[container ~]# apk upgrade && apk add apache2
[container ~]# httpd
AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using 10.88.0.2. Set the 'ServerName' directive globally to suppress this message

図10.67 コンテナに Apache をインストールする例


他の PC などの Web ブラウザから、ホスト OS の IP アドレスの 8080 番ポートに接続すると、 動作確認用ページが表示されます。 デフォルトでは、/var/www/localhost/htdocs ディレクトリにファイルを置くことで Web ブラウザから閲覧できます。 Apache の詳細な設定は、/etc/apache2 ディレクトリにある設定ファイルを編集することで変更可能です。

  • lighttpd を使用する

alpine イメージからコンテナを作成し、そのコンテナ内に lighttpd をインストールします。 コンテナ作成の際に、ホスト OS の 8080 番ポートをコンテナ内の 80 番ポートに転送する指定を行っています。

[armadillo ~]# vi /etc/atmark/containers/lighttpd_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_ports 8080:80
[armadillo ~]# podman_start lighttpd_example
Starting 'lighttpd_example'
fd7ea338d09c5e8962654ed54bba17fb6a9ed4fca1b344e350bbf8f943d2f12b
[armadillo ~]# podman exec -it lighttpd_example sh
[container ~]# apk upgrade && apk add lighttpd
[container ~]# echo "<html><body>It works!</body></html>" > /var/www/localhost/htdocs/index.html
[container ~]# lighttpd -f /etc/lighttpd/lighttpd.conf

図10.68 コンテナに lighttpd をインストールする例


lighttpd はデフォルトでは動作確認用ページが用意されていないため、上記の手順では簡単なページを /var/www/localhost/htdocs ディレクトリの下に配置しています。 他の PC などの Web ブラウザから、ホスト OS の IP アドレスの 8080 番ポートに接続すると表示されます。 lighttpd の詳細な設定は、/etc/lighttpd ディレクトリにある設定ファイルを編集することで変更可能です。

10.3.5.2. FTP サーバを構築する

ここでは、FTP サーバとして vsftp を使用する場合について説明します。 alpine イメージからコンテナを作成し、そのコンテナ内に vsftpd をインストールします。 コンテナ作成の際に、FTP 通信で使用するポートについてホスト OS 側からコンテナ内のポートに転送する指定と、 コンテナ内の環境変数として PASV_ADDRESS にホスト OS 側の IP アドレスの指定を行っています。

[armadillo ~]# vi /etc/atmark/containers/ftp_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_ports 21:21 21100-21110:21100-21110
add_args --env=PASV_ADDRESS=<ホストの IP アドレス>
[armadillo ~]# podman_start ftp_example
Starting 'ftp_example'
efcf1ba752c2db9ae1a33ac11af3be71d95ac7b737ce9734730ebca602e57796
[armadillo ~]# podman exec -it ftp_example sh
[container ~]# apk upgrade && apk add vsftpd

図10.69 コンテナに vsftpd をインストールする例


コンテナ内にユーザアカウントを作成し、このユーザで ftp ログインできるようにします。

[container ~]# adduser atmark
Changing password for atmark
New password: (パスワードを入力)
Retype password: (パスワードを入力)
passwd: password for atmark changed by root

図10.70 ユーザを追加する例


作成したユーザで ftp ログインできるように、vsftpd の設定ファイルを編集します。

[container ~]# sed -i -e 's/anonymous_enable=YES/#anonymous_enable=YES/g' /etc/vsftpd/vsftpd.conf
[container ~]# sed -i -e 's/#local_enable=YES/local_enable=YES/g' /etc/vsftpd/vsftpd.conf
[container ~]# sed -i -e 's/#write_enable=YES/write_enable=YES/g' /etc/vsftpd/vsftpd.conf
[container ~]# echo "pasv_enable=YES" >> /etc/vsftpd/vsftpd.conf
[container ~]# echo "pasv_min_port=21100" >> /etc/vsftpd/vsftpd.conf
[container ~]# echo "pasv_max_port=21110" >> /etc/vsftpd/vsftpd.conf
[container ~]# echo "pasv_address=$PASV_ADDRESS" >> /etc/vsftpd/vsftpd.conf

図10.71 設定ファイルの編集例


編集した設定ファイルを指定して vftpd を起動することにより、ftp 接続可能となります。 ftp ログイン時のアカウントは前述の手順で作成したものを使用します。

[container ~]# vsftpd /etc/vsftpd/vsftpd.conf

図10.72 vsftpd の起動例


10.3.5.3. Samba サーバを構築する

ここでは、Samba サーバの構築方法について説明します。 alpine イメージからコンテナを作成し、そのコンテナ内に samba をインストールします。 コンテナ作成の際に、samba で使用するポートについてホスト OS 側からコンテナ内のポートに転送する指定を行っています。

[armadillo ~]# vi /etc/atmark/containers/smb_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_ports 139:139 445:445
[armadillo ~]# podman_start smb_example
Starting 'smb_example'
6d81c01fe27b5a92ee6ea69de2f9a8dbb569d420c2f5f630ece1966c81824a1f
[armadillo ~]# podman exec -it smb_example sh
[container ~]# apk upgrade && apk add samba

図10.73 コンテナに samba をインストールする例


コンテナ内にユーザアカウントを作成し、このユーザで samba にログインできるようにします。

[container ~]# adduser atmark
Changing password for atmark
New password: (パスワードを入力)
Retype password: (パスワードを入力)
passwd: password for atmark changed by root
[container ~]# pdbedit -a atmark
new password: (パスワードを入力)
retype new password: (パスワードを入力)

図10.74 ユーザを追加する例


samba を起動すると、前述の手順で作成したユーザアカウントで他の PC などからログインすることができます。

[container ~]# smbd

図10.75 samba の起動例


共有するディレクトリの指定などの詳細設定は /etc/samba/smb.conf ファイルを編集することで変更可能です。

10.3.5.4. SQL サーバを構築する

ここでは、RDMS として sqlite を使用する場合について説明します。 alpine イメージからコンテナを作成し、そのコンテナ内に sqlite をインストールします。

[armadillo ~]# vi /etc/atmark/containers/sqlite_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_volumes /var/app/volumes/sqlite_db:/db
[armadillo ~]# podman_start sqlite_example
Starting 'sqlite_example'
114c5f1dbb7e81293dcb8fbe0c600b861626375b14cfe4023761acaa84fdcad1
[armadillo ~]# podman exec -it sqlite_example sh
[container ~]# apk upgrade && apk add sqlite

図10.76 コンテナに sqlite をインストールする例


コンテナ内に入り、sqlite3 コマンドを実行すると sqlite のプロンプトが表示され データベースの操作ができるようになります。

[container ~]# sqlite3 /db/mydb.sqlite
SQLite version 3.34.1 2021-01-20 14:10:07
Enter ".help" for usage hints.
sqlite>

図10.77 sqlite の実行例


10.3.6. 異常検知

この章では、コンテナ内で動作しているアプリケーションに何らかの異常が発生し停止してしまった際に、 ソフトウェアウォッチドックタイマーを使って、システムを再起動する方法について示します。

10.3.6.1. ソフトウェアウォッチドッグタイマーを扱う

コンテナ内で動作するアプリケーションからソフトウェアウォッチドックタイマーを扱うためには、Podman のイメージからコンテナを作成する際にホスト OS 側の デバイスファイル /dev/watchdogN を渡す必要があります。以下は、/dev/watchdog0 を渡して alpine イメージからコンテナを作成する例です。

[armadillo ~]# vi /etc/atmark/containers/watchdog_example.conf
set_image docker.io/alpine
set_command sleep infinity
add_devices /dev/watchdog0
[armadillo ~]# podman_start watchdog_example
Starting 'watchdog_example'
a5d329cca49d60423ce4155d72a119b8049a03dbd1d0277817a253e96dce7bc7

図10.78 ソフトフェアウォッチドッグタイマーを使うためのコンテナ作成例


ソフトウェアウォッチドックタイマーは、プログラム内からデバイスファイル /dev/watchdog0 を open した時点で起動します。 コンテナ内に入ってソフトウェアウォッチドックタイマーを echo コマンドで起動する例を以下に示します。

[armadillo ~]# podman exec -it watchdog_example sh
[container ~]# echo > /dev/watchdog0

図10.79 コンテナ内からソフトウェアウォッチドッグタイマーを起動する実行例


ソフトウェアウォッチドックタイマーを起動した後、/dev/watchdog0 に任意の文字を書き込むことで ソフトウェアウォッチドッグタイマーをリセットすることができます。 60 秒間任意の文字の書き込みがない場合は、システムが再起動します。

[armadillo ~]# podman exec -it watchdog_example sh
[container ~]# echo a > /dev/watchdog0

図10.80 ソフトウェアウォッチドッグタイマーをリセットする実行例


ソフトウェアウォッチドックタイマーを停止したい場合は、/dev/watchdog0 に V を書き込みます。

[armadillo ~]# podman exec -it watchdog_example sh
[container ~]# echo V > /dev/watchdog0

図10.81 ソフトウェアウォッチドッグタイマーを停止する実行例


10.4. コンテナの運用

10.4.1. コンテナの自動起動

Armadillo Base OSでは、/etc/atmark/containers/*.confファイルに指定されているコンテナがブート時に自動的に起動します。 nginx.confの記載例を以下に示します。

[armadillo ~]# cat /etc/atmark/containers/nginx.conf
set_image docker.io/library/nginx:alpine
set_readonly no
add_ports 80:80

図10.82 コンテナを自動起動するための設定例


.conf ファイルは以下のパラメータを設定できます。

  • コンテナイメージの選択: set_image [イメージ名]

    イメージの名前を設定できます。

    : set_image docker.io/debian:latest, set_image localhost/myimage

    イメージをrootfsとして扱う場合に --rootfs オプションで指定できます。

    : set_image --rootfs /var/app/volumes/debian

  • ポート転送: add_ports [ホストポート]:[コンテナポート]

    設定したポートで外部からコンテナへのアクセスが可能となります。

    デフォルトはTCPで、UDPも /udp を付けて使えます。スペースで分けて複数のポートを設定することができます。

    以下の例では、ポート80、443(web)、UDPの69(tftp)にアクセスすることができ、コンテナのポート22(ssh)にはポート2222からアクセスすることができます。

    : add_ports 80:80 443:443 2222:22 69:69/udp

    [警告]

    pod を使う場合、このオプションはpodの設定にしないと有効になりませんのでご注意ください。

  • デバイスファイル作成: add_devices [ホストパス]:[コンテナパス]

    コンテナでデバイスを作成して、使用可能となります。

    コンテナパスを設定しない場合はホストと同じパスを使います。

    複数のデバイスを作成したい場合はスペースで分けて設定してください。

    : add_devices /dev/galcore /dev/v4l/by-id/usb-046d_HD_Pro_Webcam_C920_78DA8CAF-video-index0:/dev/video3

    ホストパスに「:」を含む場合は add_device "[ホストパス]" "[コンテナパス]" で追加できます。

    : add_device "/dev/v4l/by-path/XXXXX" "/dev/video3"

    コンテナパスに「:」を含むようなパスは設定できません。

  • ボリュームマウント: add_volumes [ホストパス]:[コンテナパス]:[オプション]

    指定するパスをコンテナ内でマウントして、データの保存や共有することができます。

    ホストパスは以下のどちらかを指定してください。

    • /var/app/rollback/volumes/<folder><folder>:

      アップデートの際に新しくコピー(snapshot)した場合、コピー先のみ変更しますので、 アップデート中でもこのデータを使うことができます。 途中で電源が落ちた場合でも、このデータに影響はありません。

      SWUpdateでアップデートするデータに向いています。

    • /var/app/volumes/<folder>: appパーティションに書きます。

      アップデートの際にコピーされませんので、アップデート中の新たな変更は 更新されたコンテナ内のアプリケーションで見れます。

      ログやデータベースに向いています。

    • /tmp/<folder>: 複数のコンテナでメモリファイルシステムを共有したい場合に使ってください。
    • /opt/firmware: 学習能力に必要なファムウェアライブラリーのパス。

    コンテナパスを設定しない場合はホストパスと同じパスを使います。

    オプションは podman run--volume のオプションになりますので、 ro (read-only), nodev, nosuid, noexec, shared, slave 等を設定できます。

    add_volumes /var/app/volumes/database:/database: ロールバックされないデータを/databaseで保存します。

    : add_volumes assets:/assets:ro,nodev,nosuid /opt/firmware: アプリケーションのデータを/assetsで読み取り、/opt/firmwareのファームウェアを使えます。

    「:」はホスト側のパスとコンテナのパスを別ける意味があるため、ファイル名やデバイス名に「:」を使うことはできません。

    [ティップ]

    複数のコンテナでマウントコマンドを実行することがあれば、shared のフラグで起動後のマウントを共有することができます。

    [armadillo ~]# cat /etc/atmark/containers/mounter.conf
    set_image docker.io/alpine
    add_args -ti
    add_volumes /tmp/mnt:/mnt:shared 1
    add_args --cap-add SYS_ADMIN
    add_device /dev/sda1
    [armadillo ~]# cat /etc/atmark/containers/client.conf
    set_image docker.io/alpine
    add_volumes /tmp/mnt:/mnt:slave 2
    add_args -ti
    [armadillo ~]# podman exec mounter mount /dev/sda1 /mnt 3
    [armadillo ~]# podman exec client ls /mnt 4
    file_on_usb

    図10.83 ボリュームを shared でサブマウントを共有する例


    1

    マウントを行うコンテナに shared の設定とマウント権限 (SYS_ADMIN) を与えます。

    2

    マウントを使うコンテナに slave だけを設定すれば一方にしか共有されません。

    3

    USB デバイスをマウントします。

    4

    マウントされたことを確認します。

  • pod の選択: set_pod [ポッド名]

    「podの作成」で作成した pod の名前を入れてコンテナを pod 内で起動します。

    : set_pod mypod

  • ネットワークの選択: set_network [ネットワーク名]

    この設定に「networkの作成」で作成したネットワーク以外に nonehost の特殊な設定も選べます。

    none の場合、コンテナに localhost しかないネームスペースに入ります。

    host の場合はOSのネームスペースをそのまま使います。

    : set_network mynetwork

  • IP アドレスの設定: set_ip [アドレス]

    コンテナの IP アドレスを設定することができます。

    : set_ip 10.88.0.100

    [ティップ]

    コンテナ間の接続が目的であれば、podを使ってlocalhostかpodの名前でアクセスすることができます。

  • 読み取り専用設定: set_readonly yes

    コンテナ内からのファイルシステムへの書き込み許可を設定します。

    デフォルトで書き込み可能となっています。

    コンテナ内からのファイルシステムへの書き込みを禁止することで、 tmpfs として使うメモリの消費を明示的に抑えることができますが、 アプリケーションによっては読み込み専用のファイルシステムでは動作しない可能性もあります。

  • イメージの自動ダウンロード設定: set_pull [設定]

    この設定を missing にすると、イメージが見つからない場合にイメージを自動的にダウンロードします。

    always にすると、イメージがすでにダウンロード済みでも起動前に必ず更新の確認を取ります。

    デフォルトでは never で、イメージが見つからない場合にエラーを表示します。

    set_pull missingset_pull always

  • コンテナのリスタート設定: set_restart [設定]

    コンテナが停止した時にリスタートさせます。

    podman killpodman stop で停止する場合、この設定と関係なくリスタートしません。

    デフォルトで on-failure になっています。

    : set_restart alwaysset_restart no

  • 自動起動の無効化: set_autostart no

    手動かまたは別の手段で操作するコンテナがある場合、Armadillo の起動時に自動起動しないようにします。

    その場合、 podman_start <name> で起動させることができます。

    [ティップ]

    コンフィグに記載していないイメージはアップデートの際に削除されますので、そういったイメージに対して設定してください。

  • 実行コマンドの設定: set_command [コマンド]

    コンテナを起動するときのコマンド。設定されなかった場合、コンテナイメージのデフォルトを使います。

    : set_command /bin/sh -c "echo bad example"

  • podman run に引数を渡す設定: add_args [引数]

    ここまでで説明した設定項目以外の設定を行いたい場合は、この設定で podman run に直接引数を渡すことができます。

    add_args --cap-add=SYS_TTY_CONFIG --env=XDG_RUNTIME_DIR=/run/xdg_home

10.4.2. podの作成

podman_startpod 機能を使うことができます。

pod を使うことで、複数のコンテナが同じネットワークネームスペースを共有することができます。 同じ pod の中のコンテナが IP の場合 localhost で、 unix socket の場合 abstract path で相互に接続することができます。

[armadillo ~]# cat /etc/atmark/containers/mypod.conf
set_type pod
add_ports 80:80
set_infra_imager k8s.gcr.io/pause:3.5

[armadillo ~]# cat /etc/atmark/containers/nginx.conf
set_image docker.io/library/nginx:alpine
set_readonly no
set_pod mypod

[armadillo ~]# podman ps
CONTAINER ID  IMAGE                           COMMAND               CREATED      STATUS          PORTS               NAMES
0cdb0597b610  k8s.gcr.io/pause:3.5                                  2 hours ago  Up 2 hours ago  0.0.0.0:80->80/tcp  5ba7d996f673-infra
3292e5e714a2  docker.io/library/nginx:alpine  nginx -g daemon o...  2 hours ago  Up 2 hours ago  0.0.0.0:80->80/tcp  nginx

図10.84 podを使うコンテナを自動起動するための設定例


コンテナと同じく、 /etc/atmark/containers/[NAME].conf ファイルを作って、 set_type pod を設定することで pod を作成します。

pod を使う時にコンテナの設定ファイルに set_pod [NAME] の設定を追加します。

ネットワークネームスペースは pod を作成するときに必要なため、 ports, networkip の設定は pod のコンフィグファイルに入れなければなりません。

ネットワーク設定の他に、 infra_image のオプションで pod のイメージも固める事ができます。 この設定は set_type network の後しか使えませんので、set_type はファイルの最初のところに使ってください

必要であれば、他の podman pod create のオプションを add_args で設定することができます。

[警告]

pod を使う時に podman が特殊な「infra container」も起動します(例の場合、 k8s.gcr.io/pause:3.5 を起動させました)

コンフィグレーションに pod を入れるアップデートの際に自動的に podman pull でイメージをダウンロードしますが、 インターネットを使わせたくないアップデートがあれば swdesc_embed_containerswdesc_usb_container で入れてください。 その場合、 infra_image の設定も使ってください。

10.4.3. networkの作成

podman_start で podman の network も作成ことができます。

デフォルトの 10.88.0.0/16 が使えない場合、あるいはコンテナ同士で接続できないようにしたい場合は使ってください。

[armadillo ~]# cat /etc/atmark/containers/mynetwork.conf
set_type network
set_subnet 192.168.100.0/24

[armadillo ~]# cat /etc/atmark/containers/nginx.conf
set_image docker.io/library/nginx:alpine
set_ports 80:80
set_ip 192.168.100.10
set_network mynetwork

[armadillo ~]# podman ps
CONTAINER ID  IMAGE                           COMMAND               CREATED      STATUS          PORTS               NAMES
3292e5e714a2  docker.io/library/nginx:alpine  nginx -g daemon o...  2 hours ago  Up 2 hours ago  0.0.0.0:80->80/tcp  nginx

図10.85 networkを使うコンテナを自動起動するための設定例


コンテナと同じく、 /etc/atmark/containers/[NAME].conf ファイルを作って、 set_type network を設定することで network を作成します。

そのネットワークを使う時にコンテナの設定ファイルに set_network [NAME] の設定をいれます。

ネットワークのサブネットは set_subnet [SUBNET] で設定します。 この設定は set_type network の後しか使えませんので、set_type はファイルの最初のところに使ってください

他の podman network create のオプションが必要であれば、 add_args で設定することができます。

10.4.4. コンテナからのコンテナ管理

podman では REST API による管理アクセスも可能です。

自分のコンテナから他のコンテナの管理が必要な場合に、ホストの podman サービスを有効にして、 コンテナに /run/podman をボリュームマウントすれば podman --remote で管理できます。

podman_start をインストールすればそちらも --remote で使えます。

このオプションは Armadillo のホスト側の udev rules からコンテナを扱う時にも必要です。

10.4.5. コンテナの配布

[ティップ]

コンテナの作成は 「アプリケーションコンテナを作成、実行する」 を参考にしてください。

コンテナのイメージを配布する方法は大きく分けて二つあります:

  1. インターネット上のリポジトリ(dockerhub等)で登録してそこから配布する
  2. SWUpdateのアップデートイメージを配布する
[警告]

Podmanのイメージをインストールする時に、一時データを大量に保存する必要があります。

swuイメージ内で組み込む時は3倍、pullやUSBドライブで分けてインストールすると転送するデータ量の2倍の空き容量がappパーティションに必要です。

アップデート時にアップデート前のコンテナが使われているのでご注意ください。

10.4.5.1. リモートリポジトリにコンテナを送信する方法

  1. イメージをリモートリポジトリに送信する:

    [armadillo ~]$ podman image push <localimage> docker://<registry>/<remoteimage>:<tag>
  2. set_pull always を設定しないかぎり、SWUpdateでダウンロードの命令を送らないとアップデートを行いません。

    (mkswuについては 「Armadilloのソフトウェアをアップデートする」 を参考にしてください)

    [ATDE ~/mkswu]$ cp /usr/share/mkswu/examples/pull_container_nginx.desc .
    [ATDE ~/mkswu]$ cp -r /usr/share/mkswu/examples/nginx_start .
    [ATDE ~/mkswu]$ cat pull_container_nginx.desc
    swdesc_option version=1
    
    swdesc_pull_container "docker.io/nginx:alpine"
    swdesc_files --extra-os nginx_start
    [ATDE ~/mkswu]$ mkswu pull_container_nginx.desc
    Enter pass phrase for /home/atmark/mkswu/swupdate.key:
    pull_container_nginx.swu を作成しました。

10.4.5.2. イメージを eMMC に保存する方法

Armadillo Base OS のデフォルトでは、Podman のデータは tmpfs に保存されます。

起動時にイメージを起動するにはイメージを eMMC に書き込む必要があります。 想定の使い方では、以下の 「イメージを SWUpdate で転送する方法」 でコンテナのイメージを送信する場合には、 /var/lib/containers/storage_readonly の app パーティションのサブボリュームに展開します。

開発の時に、abos-ctrl podman-storage --disk を設定すると別の /var/log/containers/storage が作成されますが、SWUpdate で転送するイメージはそのまま readonly の方に書き込みます。

  • abos-ctrl podman-rw

abos-ctrl podman-rw を使えば、read-only になっているイメージを扱う事ができます。

[armadillo ~]# podman images
REPOSITORY                 TAG         IMAGE ID      CREATED            SIZE        R/O
[armadillo ~]# mount /dev/sda1 /mnt
[armadillo ~]# abos-ctrl podman-rw load -i /mnt/at-debian-image.tar
Getting image source signatures
Copying blob 63c098a71e7b done
Copying blob 837e73dd4d20 done
Copying blob a25086e65f63 done
Copying config b5a30f8581 done
Writing manifest to image destination
Storing signatures
Loaded image(s): localhost/at-debian-image:latest
[armadillo ~]# podman image list
REPOSITORY                 TAG         IMAGE ID      CREATED      SIZE        R/O
localhost/at-debian-image  latest      b5a30f8581cc  2 hours ago  233 MB      true

図10.86 abos-ctrl podman-rw の実行例


  • abos-ctrl podman-storage

abos-ctrl podman-storage はメモリとディスクの切り替えの他に、読み書きストレージから読み取り専用ストレージへのコピーもできます。

[armadillo ~]# podman pull docker.io/alpine 1
Trying to pull docker.io/library/alpine:latest...
Getting image source signatures
Copying blob f97344484467 done
Copying config 3d81c46cd8 done
Writing manifest to image destination
Storing signatures
3d81c46cd8756ddb6db9ec36fa06a6fb71c287fb265232ba516739dc67a5f07d
[armadillo ~]# abos-ctrl podman-storage 2
There are images configured on development storage:
REPOSITORY                TAG         IMAGE ID      CREATED     SIZE
docker.io/library/alpine  latest      3d81c46cd875  3 days ago  5.56 MB

What should we do? ([N]othing (default), [C]opy, [R]emove)
copy 3
Create a snapshot of '/mnt/boot_0/containers_storage' in '/mnt/new_storage'
Getting image source signatures
Copying blob 5b7df235d876 done
Copying config 3d81c46cd8 done
Writing manifest to image destination
Storing signatures
Delete subvolume (no-commit): '/mnt/new_storage'
Copying development images to readonly storage succeeded
Feel free to adjust the result with abos-ctrl podman-rw commands

Now freeing up original data...
Podman is in tmpfs mode 4
[armadillo ~]# podman image list 5
REPOSITORY                TAG         IMAGE ID      CREATED     SIZE        R/O
docker.io/library/alpine  latest      3d81c46cd875  3 days ago  5.56 MB     true

図10.87 abos-ctrl podman-storage のイメージコピー例


1

イメージを書き込み可能ストレージに取得します。

2

abos-ctrl podman-storage をオプション無しで実行します。

3

書き込み可能ストレージにイメージがある場合に対応を聞かれます。今回はコピー(copy)します。

4

abos-ctrl podman-storage にオプションを指定しなかったので、ストレージが tmpfs のままになります。すでに --disk で切り替えた場合にディスクのままでも可能です。

5

コピーの確認します。イメージが読み取り専用(R/O, Read only)になりました。

[警告]

SWUpdate でアップデートをインストールする際には、/var/lib/containers/storage_readonly ディレクトリの不要になったイメージを自動的に削除します。

自動起動させる予定がなくても、 「コンテナの自動起動」 を参考にして、 /etc/atmark/containers/*.conf を使ってください。 set_autostart no を設定することで自動実行されません。

10.4.5.3. イメージを SWUpdate で転送する方法

  1. イメージをファイルに保存する:

    [armadillo ~]$ podman image save -o <myimage>.tar <localimage>
  2. ファイルをSWUpdateのイメージに入れる。

    二つのやり方があります:

    1. swuイメージ内に組み込む

      [ATDE ~/mkswu]$ cp /usr/share/mkswu/examples/embed_container_nginx.desc .
      [ATDE ~/mkswu]$ cp -r /usr/share/mkswu/examples/nginx_start .
      [ATDE ~/mkswu]$ cat embed_container_nginx.desc
      swdesc_option version=1
      
      swdesc_embed_container "nginx_alpine.tar"
      swdesc_files --extra-os nginx_start
      [ATDE ~/mkswu]$ podman pull --arch arm --variant v7 docker.io/nginx:alpine
      [ATDE ~/mkswu]$ podman run --rm docker.io/nginx:alpine uname -m
      armv7l
      [ATDE ~/mkswu]$ podman save docker.io/nginx:alpine > nginx_alpine.tar
      [ATDE ~/mkswu]$ mkswu embed_container_nginx.desc
      Enter pass phrase for /home/atmark/mkswu/swupdate.key:
      embed_container_nginx.swu を作成しました
    2. USBドライブに保存する

      [ATDE ~/mkswu]$ cp /usr/share/mkswu/examples/usb_container_nginx.desc .
      [ATDE ~/mkswu]$ cp -r /usr/share/mkswu/examples/nginx_start .
      [ATDE ~/mkswu]$ cat usb_container_nginx.desc
      swdesc_option version=1
      
      swdesc_usb_container "nginx_alpine.tar"
      swdesc_files --extra-os nginx_start
      [ATDE ~/mkswu]$ podman pull --arch arm --variant v7 docker.io/nginx:alpine
      [ATDE ~/mkswu]$ podman run --rm docker.io/nginx:alpine uname -m
      armv7l
      [ATDE ~/mkswu]$ podman save docker.io/nginx:alpine > nginx_alpine.tar
      [ATDE ~/mkswu]$ mkswu -o usb_container_nginx.swu usb_container_nginx.desc
      Enter pass phrase for /home/atmark/mkswu/swupdate.key:
      以下のファイルをUSBメモリにコピーしてください:
      '/home/atmark/mkswu/usb_container_nginx.swu'
      '/home/atmark/mkswu/nginx_alpine.tar'
      '/home/atmark/mkswu/.usb_container_nginx/nginx_alpine.tar.sig'
      
      usb_container_nginx.swu を作成しました。

10.5. Armadilloのソフトウェアをビルドする

ここでは、Armadillo-IoT ゲートウェイ A6E で使用するソフトウェアのビルド方法を説明します。

10.5.1. ブートローダーをビルドする

ここでは、ATDE 上で Armadillo-IoT ゲートウェイ A6E 向けのブートローダーイメージをビルドする方法を説明します。

  1. ソースコードの取得

    Armadillo-IoT ゲートウェイ A6E ブートローダー から「ブートローダー ソース」ファイル (u-boot-[VERSION].tar.gz) を図10.88「ブートローダーのソースコードをダウンロードする」に示す手順でダウンロードします。

    [ATDE ~]$ wget https://download.atmark-techno.com/armadillo-iot-a6e/bootloader/u-boot-[VERSION].tar.gz
    [ATDE ~]$ tar xf u-boot-[VERSION].tar.gz
    [ATDE ~]$ cd u-boot-[VERSION]

    図10.88 ブートローダーのソースコードをダウンロードする


  2. デフォルトコンフィギュレーションの適用

    図10.89「デフォルトコンフィギュレーションの適用」に示すコマンドを実行します。

    [ATDE ~/u-boot-[VERSION]]$ make ARCH=arm armadillo-iotg-a6e_defconfig
      HOSTCC  scripts/basic/fixdep
      HOSTCC  scripts/kconfig/conf.o
      YACC    scripts/kconfig/zconf.tab.c
      LEX     scripts/kconfig/zconf.lex.c
      HOSTCC  scripts/kconfig/zconf.tab.o
      HOSTLD  scripts/kconfig/conf
    #
    # configuration written to .config
    #

    図10.89 デフォルトコンフィギュレーションの適用


  3. ビルド

    ブートローダーのビルドを実行するには、図10.90「ブートローダーのビルド」に示すコマンドを実行します。

    [ATDE ~/u-boot-[VERSION]]$ make CROSS_COMPILE=arm-linux-gnueabihf-
    :
    : (省略)
    :
      SHIPPED dts/dt.dtb
      FDTGREP dts/dt-spl.dtb
      CAT     u-boot-dtb.bin
      CFGS    u-boot-dtb.cfgout
      MKIMAGE u-boot-dtb.imx
      OBJCOPY u-boot.srec
      COPY    u-boot.bin
      SYM     u-boot.sym
      COPY    u-boot.dtb
      CFGCHK  u-boot.cfg

    図10.90 ブートローダーのビルド


  4. ビルド結果の確認

    ビルドが終了しますと、イメージファイルが生成されます。確認には、図10.91「ブートローダーの結果確認」に示すコマンドを実行します。

    [ATDE ~/u-boot-[VERSION]]$ ls u-boot-dtb.imx
    u-boot-dtb.imx

    図10.91 ブートローダーの結果確認


10.5.2. Linux カーネルをビルドする

ここでは、Armadillo-IoT ゲートウェイ A6E 向けのLinuxカーネルイメージをビルドする方法を説明します。

[ティップ]

Armadillo-IoT ゲートウェイ A6Eでは、基本的にはLinuxカーネルイメージをビルドする必要はありません。 「Alpine Linux ルートファイルシステムをビルドする」の手順を実施することで、標準のLinuxカーネルイメージがルートファイルシステムに組み込まれます。

標準のLinuxカーネルイメージは、アットマークテクノが提供する linux-at というAlpine Linux用のパッケージに含まれています。

カスタマイズしたLinuxカーネルイメージを利用するには、 「Alpine Linux ルートファイルシステムをビルドする」の手順の中で、 a6e/packages から linux-at を削除し、 a6e/resources/boot/ にイメージを配置する必要があります。

  1. ソースコードの取得

    Armadillo-IoT ゲートウェイ A6E Linuxカーネル から「Linuxカーネル」ファイル (linux-at-[VERSION].tar) をダウンロードして、図10.92「Linux カーネルソースコードの展開」に示すコマンドを実行して展開します。

    [ATDE ~]$ tar xf linux-at-[VERSION].tar
    [ATDE ~]$ tar xf linux-at-[VERSION]/linux-[VERSION].tar.gz
    [ATDE ~]$ cd linux-[VERSION]

    図10.92 Linux カーネルソースコードの展開


  1. デフォルトコンフィギュレーションの適用

    図10.93「Linux カーネルデフォルトコンフィギュレーションの適用」に示すコマンドを実行します。

    [ATDE ~/linux-[VERSION]]$ make ARCH=arm armadillo-iotg-a6e_defconfig

    図10.93 Linux カーネルデフォルトコンフィギュレーションの適用


  2. Linux カーネルコンフィギュレーションの変更

    コンフィギュレーションの変更を行わない場合はこの手順は不要です。 変更する際は、図10.94「Linux カーネルコンフィギュレーションの変更」に示すコマンドを実行します。

    [ATDE ~]$ make ARCH=arm menuconfig

    図10.94 Linux カーネルコンフィギュレーションの変更


    コマンドを実行するとカーネルコンフィギュレーション設定画面が表示されます。 カーネルコンフィギュレーションを変更後、"Exit"を選択して「Do you wish to save your new kernel configuration? (Press <ESC><ESC> to continue kernel configuration.)」で "Yes" を選択し、 カーネルコンフィギュレーションを確定します。

     .config - Linux/arm 5.10.145 Kernel Configuration
     ─────────────────────────────────────────────
      ┌──────────  Linux/arm 5.10.145 Kernel Configuration   ──────────┐
      │  Arrow keys navigate the menu.  <Enter> selects submenus ---> (or empty submenus   │
      │  ----).  Highlighted letters are hotkeys.  Pressing <Y> includes, <N> excludes, <M>│
      │  modularizes features.  Press <Esc><Esc> to exit, <?> for Help, </> for Search.    │
      │  Legend: [*] built-in  [ ] excluded  <M> module  < > module capable                │
      │ ┌───────────────────────────────────────┐ │
      │ │         General setup  --->                                                  │ │
      │ │         System Type  --->                                                    │ │
      │ │         Bus support  --->                                                    │ │
      │ │         Kernel Features  --->                                                │ │
      │ │         Boot options  --->                                                   │ │
      │ │         CPU Power Management  --->                                           │ │
      │ │         Floating point emulation  --->                                       │ │
      │ │         Power management options  --->                                       │ │
      │ │         Firmware Drivers  --->                                               │ │
      │ │     [ ] ARM Accelerated Cryptographic Algorithms  ----                       │ │
      │ │         General architecture-dependent options  --->                         │ │
      │ │     [*] Enable loadable module support  --->                                 │ │
      │ │     [*] Enable the block layer  --->                                         │ │
      │ │         IO Schedulers  --->                                                  │ │
      │ │         Executable file formats  --->                                        │ │
      │ │         Memory Management options  --->                                      │ │
      │ │     [*] Networking support  --->                                             │ │
      │ │         Device Drivers  --->                                                 │ │
      │ │         File systems  --->                                                   │ │
      │ │         Security options  --->                                               │ │
      │ │     -*- Cryptographic API  --->                                              │ │
      │ │         Library routines  --->                                               │ │
      │ │         Kernel hacking  --->                                                 │ │
      │ │                                                                              │ │
      │ └───────────────────────────────────────┘ │
      ├──────────────────────────────────────────┤
      │              <Select>    < Exit >    < Help >    < Save >    < Load >              │
      └──────────────────────────────────────────┘

    図10.95 Linux カーネルコンフィギュレーション設定画面


    [ティップ]

    Linux Kernel Configuration メニューで"/"キーを押下すると、カーネルコンフィギュレーションの検索を行うことができます。 カーネルコンフィギュレーションのシンボル名(の一部)を入力して"Ok"を選択すると、部分一致するシンボル名を持つカーネルコンフィギュレーションの情報が一覧されます。

  3. ビルド

    Linux カーネルをビルドするには、図10.96「Linux カーネルコンフィギュレーションの変更」に示すコマンドを実行します。

    [ATDE ~/linux-[VERSION]]$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- LOADADDR=0x82000000 uImage
    [ATDE ~/linux-[VERSION]]$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-

    図10.96 Linux カーネルコンフィギュレーションの変更


  4. ビルド結果の確認

    ビルドが正常終了すると、図10.97「Linux カーネルビルドしたファイルの確認」に示すイメージファイルが生成されます。

    [ATDE ~/linux-[VERSION]]$ ls arch/arm/boot/uImage
    arch/arm/boot/uImage
    [ATDE ~/linux-[VERSION]]$ ls arch/arm/boot/dts/armadillo-iotg-a6e*.dtb*
    arch/arm/boot/dts/armadillo-iotg-a6e-ems31.dtbo
    arch/arm/boot/dts/armadillo-iotg-a6e.dtb
    arch/arm/boot/dts/armadillo-iotg-a6e-lwb5plus.dtbo

    図10.97 Linux カーネルビルドしたファイルの確認


10.5.3. Alpine Linux ルートファイルシステムをビルドする

ここでは、build-rootfs を使って、 Alpine Linux ルートファイルシステムを構築する方法を説明します。

build-rootfs は、ATDE 上で Armadillo-IoT ゲートウェイ A6E 用の Alpine Linux ルートファイルシステムを構築することができるツールです。

10.5.3.1. デフォルトの Alpine Linux ルートファイルシステムを構築する

  1. ルートファイルシステムのビルドに必要な Podman のインストール

    次のコマンドを実行します。

    [ATDE ~]$ sudo apt install podman btrfs-progs xxhash
  2. build-rootfs の入手

    Armadillo-IoT ゲートウェイ A6E 開発用ツール から 「Alpine Linuxルートファイルシステムビルドツール」 ファイル (build-rootfs-[VERSION].tar.gz) を次のようにダウンロードします。

    [PC ~/]$ wget https://download.atmark-techno.com/armadillo-iot-a6e/tool/build-rootfs-latest.tar.gz
    [PC ~/]$ tar xf build-rootfs-[VERSION].tar.gz
    [PC ~/]$ cd build-rootfs-[VERSION]
  3. ビルド

    次のコマンドを実行します。

    パッケージをインターネット上から取得するため回線速度に依存しますが、ビルドには数分かかります。

    [ATDE ~/build-rootfs-[VERSION]]$ sudo ./build_rootfs.sh -b a6e
    use default(outdir=/home/atmark/git/build-rootfs)
    use default(output=baseos-6e-ATVERSION.tar.zst)
    :
    : (略)
    :
    > Creating rootfs archive
    -rw-r--r--    1 root     root     231700480 Oct 11 07:18 rootfs.tar
    ERROR: No such package: .make-alpine-make-rootfs
    ============================================
    footprint[byte]  tarball[byte]  packages
          229904000       74942331  alpine-base coreutils chrony ...(省略)
    ============================================
    done.
    [注記]

    ビルド時のログにエラー "ERROR: No such package: .make-alpine-make-rootfs" が出ていますが、正常時でも出力されるメッセージのため、 問題はありません。

    [注記]

    リリース時にバージョンに日付を含めたくないときは --release を引数に追加してください。

    [注記]

    任意のパス、ファイル名で結果を出力することもできます。

    [ATDE ~/build-rootfs-[VERSION]]$ ./build_rootfs.sh -b a6e ~/alpine.tar.gz
    :
    : (略)
    :
    [ATDE ~/build-rootfs-[VERSION]]$ ls ~/alpine.tar.gz
    ~/alpine.tar.gz
  4. ビルド結果の確認

    次のコマンドを実行します。

    [ATDE ~/build-rootfs-[VERSION]]$ ls *tar.zst
    baseos-6e-[VERSION].tar.zst

10.5.3.2. Alpine Linux ルートファイルシステムをカスタマイズする

alpine/build-rootfsディレクトリ直下にある a6e ディレクトリ以下のファイルを変更し、 build_rootfs.shを実行することで、 ルートファイルシステムをカスタマイズすることができます。

  • install

    • resources/ ディレクトリ内のファイルを、 ルートファイルシステムにインストールするためのスクリプト
  • resources/

    • ルートファイルシステムにインストールするファイルを含んだディレクトリ
  • packages

    • ルートファイルシステムにインストールするパッケージのリスト
  • fixup

    • パッケージのインストールや上記installスクリプトの後に実行されるスクリプト
  • ファイル/ディレクトリを追加する

a6e/resources/ 以下に配置したファイルやディレクトリは、 そのままルートファイルシステムの直下にコピーされます。 デフォルトでは、 UIDとGIDは共にroot、パーミッションは 0744(ディレクトリの場合は 0755) となります。

a6e/install を修正することで、 ファイルのUID、GID、パーミッションを変更することができます。 UID、GIDを変更する場合はchown、 パーミッションを変更する場合はchmodを利用してください。

  • パッケージを変更する

a6e/packages を変更することで、 ルートファイルシステムにインストールするパッケージをカスタマイズすることができます。

パッケージ名は1行に1つ書くことができます。 パッケージ名はArmadillo上で"apk add" の引数に与えることのできる正しい名前で記載してください。 誤ったパッケージ名を指定した場合は、 ルートファイルシステムのビルドに失敗します。

[注記]

利用可能なパッケージは以下のページで検索することができます。

Alpine Linuxルートファイルシステム使用した Armadilloで検索することもできます。

[armadillo ~]# apk list *ruby*
ruby-rmagick-4.1.2-r1 armhf {ruby-rmagick} (MIT)
ruby-concurrent-ruby-ext-1.1.6-r1 armhf {ruby-concurrent-ruby} (MIT)
ruby-net-telnet-2.7.2-r3 armhf {ruby} (Ruby AND BSD-2-Clause AND MIT)
:
: (省略)
:
ruby-mustache-1.1.1-r3 armhf {ruby-mustache} (MIT)
ruby-nokogiri-1.10.10-r0 armhf {ruby-nokogiri} (MIT)

10.6. SDブートの活用

本章では、microSD カードから直接起動(以降「SDブート」と表記します)する手順を示します。 SD ブートを活用すると、microSD カードを取り替えることでシステムイメージを変更することができます。 本章に示す手順を実行するためには、容量が 8Gbyte 以上の microSD カードを必要とします。

[ティップ]

SD ブートを行った場合、ブートローダーの設定は microSDカード に保存されます。

10.6.1. ブートディスクの作成

  1. ブートディスクイメージのビルドします

    「Alpine Linux ルートファイルシステムをビルドする」 で説明されているソースツリー alpine/build-rootfs にあるスクリプト build_image「ブートローダーをビルドする」 でビルドした u-boot-dtb.imx を利用します。

[ATDE ~/build-rootfs-[VERSION]]$ sudo ./build_image.sh --board a6e \
          --boot ~/imx-boot-[VERSION]/u-boot-dtb.imx
: (省略)
[ATDE ~/build-rootfs-[VERSION]]$ ls baseos-6e*img
baseos-6e-[VERSION].img
  1. ATDE に microSD カードを接続します。詳しくは 「取り外し可能デバイスの使用」 を参考にしてください。
  2. microSD カードのデバイス名を確認します

    [ATDE ~]$ ls /dev/sd?
    /dev/sda  /dev/sdb
    [ATDE ~]$ sudo fdisk -l /dev/sdb
    Disk /dev/sdb: 7.22 GiB, 7751073792 bytes, 15138816 sectors
    Disk model: SD/MMC
    : (省略)
  3. microSD カードがマウントされている場合、アンマウントします。

    [ATDE ~]$ mount
    : (省略)
    /dev/sdb1 on /media/52E6-5897 type ext2 (rw,nosuid,nodev,relatime,uid=1000,gid=1000,fmask=0022,dmask=0077,codepage=cp437,iocharset=utf8,shortname=mixed,showexec,utf8,flush,errors=remount-ro,uhelper=udisks)
    [ATDE ~]$ sudo umount /dev/sdb1

    図10.98 自動マウントされたmicroSDカードのアンマウント


  4. ブートディスクイメージの書き込み

    [ATDE ~]$ sudo dd if=~/build-rootfs-[VERSION]/baseos-6e-[VERSION].img \
                      of=/dev/sdb bs=1M oflag=direct status=progress

    microSDカードの性能にもよりますが、書き込みには5分程度かかります。

[ティップ]

microSDカードのパーティション構成は次のようになっています。

表10.20 microSDカードのパーティション構成

パーティション オフセット サイズ 説明

-

0

10MiB

ブートローダー

1

10MiB

300MiB

A/B アップデートのA面パーティション

2

310MiB

300MiB

A/B アップデートのB面パーティション

3

610MiB

50MiB

ログ用パーティション

4

660MiB

200MiB

ファームウェア

5

860MiB

残り

アプリケーション用パーティション


gdiskで確認すると次のようになります。

[ATDE ~]$ sudo gdisk -l /dev/sdb
GPT fdisk (gdisk) version 1.0.6

Partition table scan:
  MBR: protective
  BSD: not present
  APM: not present
  GPT: present

Found valid GPT with protective MBR; using GPT.
Disk /dev/sdb: 60506112 sectors, 28.9 GiB
Model: VMware Virtual I
Sector size (logical/physical): 512/512 bytes
Disk identifier (GUID): 44B816AC-8E38-4B71-8A96-308F503238E3
Partition table holds up to 128 entries
Main partition table begins at sector 20448 and ends at sector 20479
First usable sector is 20480, last usable sector is 60485632
Partitions will be aligned on 2048-sector boundaries
Total free space is 0 sectors (0 bytes)

Number  Start (sector)    End (sector)  Size       Code  Name
   1           20480          634879   300.0 MiB   8300  rootfs_0
   2          634880         1249279   300.0 MiB   8300  rootfs_1
   3         1249280         1351679   50.0 MiB    8300  logs
   4         1351680         1761279   200.0 MiB   8300  firm
   5         1761280        60485632   28.0 GiB    8300  app

10.6.2. SDブートの実行

「ブートディスクの作成」で作成したブートディスクから起動する方法を説明します。

  1. Armadillo-IoT ゲートウェイ A6Eに電源を投入する前に、ブートディスクをCON1(SD インターフェース)に挿入します。 また、SW2 を 起動デバイスは microSD 側設定します。SW2 に関しては、図14.16「スイッチの状態と起動デバイス」 を参照ください。
  2. 電源を投入します。

    U-Boot 2020.04 (Oct 25 2022 - 10:37:29 +0900)
    
    CPU:   i.MX6ULL rev1.1 at 396 MHz
    Model: Atmark Techno Armadillo-IoT Gateway A6E Board
    DRAM:  512 MiB
    PMIC: PFUZE3000 DEV_ID=0x30 REV_ID=0x11
    MMC:   FSL_SDHC: 0, FSL_SDHC: 1
    Loading Environment from MMC... *** Warning - bad CRC, using default environment
    
    In:    serial
    Out:   serial
    Err:   serial
    Saving Environment to MMC... Writing to redundant MMC(1)... OK
    switch to partitions #0, OK
    mmc1 is current device
    flash target is MMC:1
    Net:
    Warning: ethernet@2188000 using MAC address from ROM
    eth0: ethernet@2188000
    Fastboot: Normal
    Normal Boot
    Hit any key to stop autoboot:  0
    switch to partitions #0, OK
    mmc1 is current device
    11660400 bytes read in 524 ms (21.2 MiB/s)
    Booting from mmc ...
    38603 bytes read in 22 ms (1.7 MiB/s)
    Loading fdt boot/armadillo.dtb
    ## Booting kernel from Legacy Image at 80800000 ...
    
    ...中略...
    
    Welcome to Alpine Linux 3.16
    Kernel 5.10.149-1-at on an armv7l (/dev/ttymxc2)
    
    armadillo login:

10.7. Armadilloのソフトウェアの初期化

microSD カードを使用し、Armadillo Base OS の初期化を行えます。

[ティップ]

初期化を行っても、ファームウェアパーティション(mmcblk2p4)は変更されません。

10.7.1. インストールディスクの作成

インストールディスクは二つの種類があります:

10.7.1.1. 初期化インストールディスクの作成

  1. 512 MB 以上の microSD カードを用意してください。
  2. 標準のインストールディスクイメージを使用する場合は、 Armadillo-IoT ゲートウェイ A6E インストールディスクイメージ から 「Armadillo Base OS」をダウンロードしてください。

    「Armadilloのソフトウェアをビルドする」 でビルドしたイメージを使用してインストールディスクを作成したい場合は、 以下のコマンドを実行して、インストールディスクイメージを作成してください。

    [ATDE ~/build-rootfs-[VERSION]]$ sudo ./build_image.sh --board a6e
    : (省略)
    [ATDE ~/build-rootfs-[VERSION]]$ ls baseos-6e*img
    baseos-6e-[VERSION].img
    [ATDE ~/build-rootfs-[VERSION]]$ sudo ./build_image.sh --board a6e \
            --boot ~/imx-boot-[VERSION]/u-boot-dtb.imx \
            --installer ./baseos-6e-[VERSION].img

    コマンドの実行が完了すると、baseos-x2-[VERSION]-installer.img というファイルが作成されていますので、 こちらを使用してください。

  3. ATDE に microSD カードを接続します。詳しくは「取り外し可能デバイスの使用」を参考にしてください。
  4. microSD カードのデバイス名を確認します

    [ATDE ~]$ ls /dev/sd?
    /dev/sda  /dev/sdb
    [ATDE ~]$ sudo fdisk -l /dev/sdb
    Disk /dev/sdb: 7.22 GiB, 7751073792 bytes, 15138816 sectors
    Disk model: SD/MMC
    : (省略)
  5. microSD カードがマウントされている場合、アンマウントします。

    [ATDE ~]$ mount
    : (省略)
    /dev/sdb1 on /media/52E6-5897 type ext2 (rw,nosuid,nodev,relatime,uid=1000,gid=1000,fmask=0022,dmask=0077,codepage=cp437,iocharset=utf8,shortname=mixed,showexec,utf8,flush,errors=remount-ro,uhelper=udisks)
    [ATDE ~]$ sudo umount /dev/sdb1
  6. ダウンロードしたファイルを展開し、imgファイルをmicroSDカードに書き込んでください。

    Linux PCの場合、以下のようにmicroSDカードに書き込むことができます。

    [ATDE ~]$ unzip baseos-x2-installer-[VERSION].zip
    [ATDE ~]$ sudo dd if=baseos-x2-installer-[VERSION].img \
                      of=/dev/sdb bs=1M oflag=direct status=progress

    また、Windowsの場合、エクスプローラー等でZipファイルからimgファイルを取り出し、「Win32 Disk Imager」などを使用してmicroSDカードに書き込むことができます。

10.7.1.2. 開発が完了した Armadillo をクローンするインストールディスクの作成

  1. microSD カードを用意してください。
  2. 初期化インストールディスクをベースとしますので、「初期化インストールディスクの作成」 でビルドしたSDカードを使用できますが、用意されていなければ次のステップで自動的にダウンロードされます。
  3. abos-ctrl make-installer を実行してください

    [armadillo ~]# abos-ctrl make-installer
    It looks like your SD card does not contain an installer image
    Download base SD card image from https://armadillo.atmark-techno.com (~200MB) ? [y/N]
    WARNING: it will overwrite your sd card!!
    y
    Downloading installer image
      % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                     Dload  Upload   Total   Spent    Left  Speed
    100  167M  100  167M    0     0   104M      0  0:00:01  0:00:01 --:--:--  104M
      % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                     Dload  Upload   Total   Spent    Left  Speed
    100    70  100    70    0     0   1441      0 --:--:-- --:--:-- --:--:--  1458
    Writing baseos-x2-installer-3.15.4-at.6.img to SD card (442M)
    439353344 bytes (439 MB, 419 MiB) copied, 134 s, 3.3 MB/s
    421+0 records in
    421+0 records out
    441450496 bytes (441 MB, 421 MiB) copied, 134.685 s, 3.3 MB/s
    Verifying written image is correct
    436207616 bytes (436 MB, 416 MiB) copied, 46 s, 9.5 MB/s
    421+0 records in
    421+0 records out
    441450496 bytes (441 MB, 421 MiB) copied, 46.8462 s, 9.4 MB/s
    Checking and growing installer main partition
    GPT data structures destroyed! You may now partition the disk using fdisk or
    other utilities.
    Setting name!
    partNum is 0
    The operation has completed successfully.
    e2fsck 1.46.4 (18-Aug-2021)
    Pass 1: Checking inodes, blocks, and sizes
    Pass 2: Checking directory structure
    Pass 3: Checking directory connectivity
    Pass 4: Checking reference counts
    Pass 5: Checking group summary information
    rootfs_0: 2822/102400 files (0.5% non-contiguous), 352391/409600 blocks
    (1/1) Installing e2fsprogs-extra (1.46.4-r0)
    Executing busybox-1.34.1-r5.trigger
    OK: 202 MiB in 197 packages
    resize2fs 1.46.4 (18-Aug-2021)
    Resizing the filesystem on /dev/mmcblk1p1 to 15547884 (1k) blocks.
    The filesystem on /dev/mmcblk1p1 is now 15547884 (1k) blocks long.
    
    Currently booted on /dev/mmcblk2p1
    Copying boot image
    Copying rootfs
    301989888 bytes (302 MB, 288 MiB) copied, 10 s, 30.1 MB/s
    300+0 records in
    300+0 records out
    314572800 bytes (315 MB, 300 MiB) copied, 10.3915 s, 30.3 MB/s
    Copying /opt/firmware filesystem
    Copying appfs
    At subvol app/snapshots/volumes
    At subvol app/snapshots/boot_volumes
    At subvol app/snapshots/boot_containers_storage
    Cleaning up and syncing changes to disk...
    Installer updated successfully!

10.7.2. インストールディスクを使用する

  1. SW2(起動デバイス設定スイッチ)を ON にし、起動デバイスを microSD に設定します。
  2. microSD カードを CON1 に挿入します。
  3. 電源を投入すると、1分程度でeMMCのソフトウェアの初期化が完了します。
  4. 完了すると電源が切れます(SYS(システムLED)が消灯、コンソールに reboot: Power down が表示)。
  5. 電源を取り外し、続いて SW2 を OFF に設定し、microSD カードを外してください。
  6. 10秒以上待ってから再び電源を入れると、初回起動時と同じ状態になります。

10.8. Armadilloのソフトウェアをアップデートする

Armadillo-IoT ゲートウェイ A6Eでは、 開発・製造・運用それぞれに適した複数のソフトウェアアップデート方法を用意しています。 本章では、それぞれのソフトウェアアップデート方法について説明します。

ソフトウェアアップデートを実現するソフトウェアの概要や仕様、用語については 13章ソフトウェア仕様 を参照してください。

10.8.1. SWUイメージとは?

Armadillo Base OS ではソフトウェアアップデートのためにOS やコンテナ等を格納するためにSWUというイメージ形式を使います。

SWUイメージは swupdate (https://sbabic.github.io/swupdate/swupdate.html) によってArmadillo Base OS上で検証とインストールが実行されます。SWUイメージをArmadilloに転送するための方法は、用途や状況に合わせて様々な方法を用意しています。例えば、USBメモリから読み取る、ウェブサーバーからダウンロードする、hawkBitというWebアプリケーションを使うなどです。

10.8.2. SWUイメージの作成

SWUイメージの作成には、mkswu というツールを使います。

mkswu に含まれる mkswu を実行すると、アップデート対象やバージョン等の情報を記載した .desc ファイルに含まれる命令を順次実行してイメージを作り上げます。

詳しくは「mkswu の desc ファイル」を参考にしてください。

  1. mkswu の取得

    [ATDE ~]$ sudo apt update && sudo apt install mkswu

    インストール済みの場合は、以下のコマンドを実行し最新版への更新を行ってください。

    [ATDE ~]$ sudo apt update && sudo apt upgrade
    [ティップ]

    git のバージョンからアップデートする場合、 mkswu --import で以前使っていたコンフィグをロードしてください。

    [ATDE ~/swupdate-mkimage]$ mkswu --import
    コンフィグファイルを更新しました:/home/atmark/swupdate-mkimage/mkswu.conf
    /home/atmark/swupdate-mkimage/mkswu.conf のコンフィグファイルとその鍵を
    /home/atmark/mkswu にコピーします。
    mkdir: ディレクトリ '/home/atmark/mkswu' を作成しました
    '/home/atmark/swupdate-mkimage/swupdate.key' -> '/home/atmark/mkswu/swupdate.key'
    '/home/atmark/swupdate-mkimage/swupdate.pem' -> '/home/atmark/mkswu/swupdate.pem'
    /home/atmark/swupdate-mkimage/mkswu.conf のコンフィグファイルを
    /home/atmark/mkswu/mkswu.conf にコピーしました。
    mkswu でイメージ作成を試してから前のディレクトリを消してください。
  2. 最初に行う設定

    mkswu --init を実行して鍵や最初の書き込み用のイメージを生成します。 作成する鍵は、swuパッケージを署名するために使用します。

    使用しているArmadilloに、過去に一度でもこの初回アップデート作業を行っている場合は二度同じ作業を行うことはできず、する必要もありません。 その際にArmadilloに配置した公開鍵に対応する秘密鍵でアップデートを行いますので、 「mkswu の desc ファイル」 を参考にしてそのままにお使い下さい。

    [ATDE ~]$ mkswu --init
    mkdir: ディレクトリ '/home/atmark/mkswu' を作成しました
    コンフィグファイルを更新しました:/home/atmark/mkswu/mkswu.conf
    証明書のCommon nameを入力してください: [COMMON_NAME] 1
    証明書の鍵のパスワードを入力ください(4-1024文字)2
    証明書の鍵のパスワード(確認):
    Generating an EC private key
    writing new private key to '/home/atmark/mkswu/swupdate.key'
     -----
    アップデートイメージを暗号化しますか? (N/y) 3
    アットマークテクノが作成したイメージをインストール可能にしますか? (Y/n) 4
    rootパスワード: 5
    rootパスワード(確認):
    atmarkユーザのパスワード(空の場合はアカウントをロックします): 6
    atmarkユーザのパスワード(確認):
    BaseOSイメージのarmadillo.atmark-techno.comサーバーからの自動アップデートを行いますか? (y/N) 7
    /home/atmark/mkswu/initial_setup.swu を作成しました。
    
    "/home/atmark/mkswu/initial_setup.swu" をそのまま使うことができますが、
    モジュールを追加してイメージを再構築する場合は次のコマンドで作成してください:
      mkswu "/home/atmark/mkswu/initial_setup.desc" [他の.descファイル]
    
    インストール後は、このディレクトリを削除しないように注意してください。
    鍵を失うと新たなアップデートはデバイスの /etc/swupdate.pem
    を修正しないとインストールできなくなります。
    
    [ATDE ~]$ ls ~/mkswu
    initial_setup.desc  initial_setup.swu  mkswu.conf
    swupdate.aes-key    swupdate.key       swupdate.pem 8

    1

    COMMON_NAME には証明鍵の「common name」として会社や製品が分かるような任意の名称を入力ください。

    2

    証明鍵を保護するパスフレーズを2回入力します。

    3

    swuイメージ自体を暗号化する場合に「y」を入力します。詳細は 「SWUpdate と暗号化について」 を参考にしてください。

    4

    アットマークテクノのアップデートをインストールしない予定でしたら「n」を入力します。

    5

    rootのパスワードを2回入力します。

    6

    atmarkユーザーのパスワードも2回入力します。何も入力しない場合はユーザーをロックします。

    7

    自動アップデートを無効のままで進みます。ここで「y」を入れると、定期的に アットマークテクノのサーバーからアップデートの有無を確認し、自動にインストールします。

    8

    作成したファイルを確認します。「swupdate.aes-key」は暗号化の場合のみに作成されます。

    このイメージは初回インストール用の署名鍵を使って、作成した鍵とユーザーのパスワードを設定します。

    インストール後にコンフィグの mkswu.conf と鍵の swupdate.* をなくさないようにしてください。

    [ティップ]

    このイメージに他の変更も入れれます。他の /usr/share/mkswu/examples/ ディレクトリーにある.descファイルや「mkswu の desc ファイル」を参考にして、以下の例のように同じswuにいくつかの.descを組み込めます。

    例えば、opensshを有効にします。

    [ATDE ~/mkswu]$ cp -rv /usr/share/mkswu/examples/enable_sshd* .
    : (省略)
    '/usr/share/mkswu/examples/enable_sshd/root/.ssh/authorized_keys'
        -> './enable_sshd/root/.ssh/authorized_keys'
    '/usr/share/mkswu/examples/enable_sshd.desc' -> './enable_sshd.desc'
    [ATDE ~/mkswu]$ cp ~/.ssh/id_rsa.pub \
                     enable_sshd/root/.ssh/authorized_keys
    [ATDE ~/mkswu]$ mkswu initial_setup.desc enable_sshd.desc
    enable_sshd.desc を組み込みました。
    initial_setup.swu を作成しました。
  3. イメージのインストール

    「イメージのインストール」を参考に、作成したイメージをインストールしてください。

  4. 次回以降のアップデート

    次回以降のアップデートは作成した証明鍵を使用してArmadillo-IoT ゲートウェイA6E のSWUイメージを作成します。

    .desc ファイルの内容は /usr/share/mkswu/examples/ のディレクトリや「mkswu の desc ファイル」を参考にしてください。

10.8.3. イメージのインストール

イメージをインストールする方法として下記に示すような方法があります。

  • USBメモリまたはSDカードからの自動インストール

    Armadillo-IoT ゲートウェイ A6EにUSBメモリを接続すると自動的にアップデートが始まります。 アップデート終了後にArmadillo-IoT ゲートウェイ A6Eは自動で再起動します。

    USBメモリやSDカードをvfatもしくはext4形式でフォーマットし、作成した.swuのファイルをディレクトリを作らずに配置してください。

    [ティップ]

    ATDE上でUSBメモリ/microSDカードのパーティションを作成・フォーマットする方法

    https://armadillo.atmark-techno.com/howto/atde-partition-howto

    [ATDE ~/mkswu]$ df -h
    Filesystem           Size  Used Avail Use% Mounted on
    : (省略)
    /dev/sda1        15G  5.6G  9.1G  39% /media/USBDRIVE 1
    [ATDE ~/mkswu]$ cp initial_setup.swu /media/USBDRIVE/ 2
    [ATDE ~/mkswu]$ umount /media/USBDRIVE 3

    1

    USBメモリのマウントされている場所を確認します。

    2

    ファイルをコピーします。

    3

    /media/USBDRIVEをアンマウントします。コマンド終了後にUSBメモリを取り外してください。

    エラーの場合、/var/log/messageに保存されます。例えば、コンソールで証明の間違ったイメージのエラーを表示します:

    [armadillo ~]# tail /var/log/messages
    Nov 19 10:48:42 user.notice swupdate-auto-update: Mounting sda0 on /mnt
    Nov 19 10:48:42 user.notice swupdate-auto-update: Trying update /mnt/initial_setup.swu
    Nov 19 10:48:42 user.info swupdate: START Software Update started !
    Nov 19 10:48:42 user.err swupdate: FAILURE ERROR : Signature verification failed 1
    Nov 19 10:48:42 user.err swupdate: FAILURE ERROR : Compatible SW not found
    Nov 19 10:48:42 user.err swupdate: FATAL_FAILURE Image invalid or corrupted. Not installing ...

    1

    証明が間違ったメッセージ。

  • 外部記憶装置からイメージのインストール(手動)

    USBメモリやmicroSDカード等の外部記憶装置のルートディレクトリ以外にswuイメージを保存して、イメージのインストールを行います。 ルートディレクトリに保存すると自動アップデートが行われますので、/var/log/messagesを確認してください。

    以下は外部記憶装置が/dev/mmcblk1p1(microSDカード)として認識された場合に、イメージのインストールを行う例です。

    [armadillo ~]# mount /dev/mmcblk1p1 /mnt
    [armadillo ~]# swupdate -i /mnt/swu/initial_setup.swu
    SWUpdate v5f2d8be-dirty
    
    Licensed under GPLv2. See source distribution for detailed copyright notices.
    
    [INFO ] : SWUPDATE running :  [main] : Running on AGX4500 Revision at1
    [INFO ] : SWUPDATE started :  Software Update started !
    [INFO ] : SWUPDATE running :  [read_lines_notify] : No base os update: copying current os over
    [INFO ] : SWUPDATE running :  [read_lines_notify] : Removing unused containers
    [INFO ] : SWUPDATE running :  [read_lines_notify] : swupdate triggering reboot!
    Killed
  • ウェブサーバーからイメージのインストール(手動)

    swuイメージをウェブサーバーにアップロードして、イメージのインストールを行います。 以下は、http://server/initial_setup.swu のイメージをインストールする例です。

[armadillo ~]# swupdate -d '-u http://server/initial_setup.swu'
SWUpdate v5f2d8be-dirty

Licensed under GPLv2. See source distribution for detailed copyright notices.

[INFO ] : SWUPDATE running :  [main] : Running on AGX4500 Revision at1
[INFO ] : SWUPDATE running :  [channel_get_file] : Total download size is 25 kB.
[INFO ] : SWUPDATE started :  Software Update started !
[INFO ] : SWUPDATE running :  [read_lines_notify] : No base os update: copying current os over
[INFO ] : SWUPDATE running :  [read_lines_notify] : Removing unused containers
[INFO ] : SWUPDATE running :  [read_lines_notify] : swupdate triggering reboot!
Killed
  • ウェブサーバーからの定期的な自動インストール

    swupdate-urlを有効にしたら、定期的にチェックしてインストールします。 以下はサービスの有効化とタイミングの設定の例です。

    [armadillo ~]# rc-update add swupdate-url 1
    [armadillo ~]# persist_file /etc/runlevels/default/swupdate-url 2
    [armadillo ~]#
        echo https://download.atmark-techno.com/armadillo-iot-a6e/image/baseos-x2-latest.swu \
                            > /etc/swupdate.watch 3
    [armadillo ~]# echo 'schedule="0 tomorrow"' > /etc/conf.d/swupdate-url
    [armadillo ~]# echo 'rdelay="21600"' >> /etc/conf.d/swupdate-url 4
    [armadillo ~]# persist_file /etc/swupdate.watch /etc/conf.d/swupdate-url 5

    1

    swupdate-urlサービスを有効します。

    2

    サービスの有効化を保存します。

    3

    イメージのURLを登録します。一行ごとにイメージのURLを設定することができ、複数行にイメージのURLを設定することができます。

    4

    チェックやインストールのスケジュールを設定します。

    5

    変更した設定ファイルを保存します。

    USBメモリからのアップデートと同様に、ログは/var/log/messagesに保存されます。

    [ティップ]

    initial_setupのイメージを作成の際に /usr/share/mkswu/examples/enable_swupdate_url.desc を入れると有効にすることができます。

  • hawkBit を使用した自動インストール

    hawkBit で Armadillo-IoT ゲートウェイ A6E を複数台管理してアップデートすることができます。 以下の「hawkBitサーバーから複数のArmadilloに配信する」を参考にしてください。

10.8.4. hawkBitサーバーから複数のArmadilloに配信する

hawkBitサーバーを利用することで複数のArmadillo のソフトウェアをまとめてアップデートすることができます。

手順は次のとおりです。

  1. コンテナ環境の準備

    Dockerを利用すると簡単にサーバーを準備できます。 Dockerの準備については https://docs.docker.com/get-docker/ を参照してください。

    Dockerの準備ができたら、要件に合わせてコンテナの設定を行います。

    • ATDE の場合

    • ATDE以外の場合

      • Armadillo-IoT ゲートウェイ A6E 開発用ツール から 「Hawkbit docker-composeコンテナ」 をダウンロードして展開してください。 この場合、以下に /usr/share/mkswu/hawkbit-compose を使う際に展開先のディレクトリとして扱ってください。
      • dockerがアクセスできるホストネームやアドレスを控えておいてください。
  2. hawkBitサーバーの準備

    /usr/share/mkswu/hawkbit-compose/setup_container.sh を実行して、質問に答えてください。

    以下に簡単な(TLSを有効にしない)テスト用の場合と、 TLSを有効にした場合の例を参考にしてください。

    setup_container.sh を一度実行した場合はデータのディレクトリーにある setup_container.sh のリンクを実行して、ユーザーの追加等のオプション変更を行うこともできます。 --help を参考にしてください。

    [ATDE ~]$ /usr/share/mkswu/hawkbit-compose/setup_container.sh
    docker-compose の設定ファイルと hawkBit のデータをどこに保存しますか? [/home/atmark/hawkbit-compose] 1
    setup_container.sh へのリンクを /home/atmark/hawkbit-compose に作ります。
    docker サービスに接続できませんでした。sudo でもう一度試します。
    [sudo] atmark のパスワード: 2
    OK!
    Hawkbit admin user name [admin] 3
    admin ユーザーのパスワード:  4
    パスワードを再入力してください:
    追加の管理人アカウントのユーザーネーム(空にすると追加しません) 5
    hawkBit の「device」ユーザーを登録しますか?(自動登録用) [Y/n]  6
    device ユーザーのパスワード:
    パスワードを再入力してください:
    hawkBit の「mkswu」ユーザーを登録しますか?(swuのアップロード用) [Y/n] 7
    ユーザーにロールアウトの権限を与えますか?(インストール要求を出すこと) [Y/n] 8
    mkswu ユーザーのパスワード:
    パスワードを再入力してください:
    Setup TLS reverse proxy? [y/N] 9
    
    コンテナの設定が完了しました。docker-compose コマンドでコンテナの管理が可能です。
    /home/atmark/hawkbit-compose/setup_container.sh を再び実行すると設定の変更が可能です。
    hawkBit コンテナを起動しますか? [Y/n] 10
    Creating network "hawkbit-compose_default" with the default driver
    Pulling mysql (mysql:5.7)...
    : (省略)
    Creating hawkbit-compose_hawkbit_1 ... done
    Creating hawkbit-compose_mysql_1   ... done

    図10.99 hawkBit コンテナの一番簡単な設定(テスト用)の実行例


    1

    コンテナのコンフィグレーションとデータベースの場所を設定します。

    2

    dockerの設定によってsudoが必要な場合もあります

    3

    hawkBit の Web UI のログインを admin とデフォルトにします。

    4

    そのパスワードを二回入力します。

    5

    追加のユーザーが必要な場合に追加できます。

    6

    examples/hawkbit_register.desc で armadillo を登録する場合に作っておいてください。 詳細は 「SWU で hawkBit を登録する」 を参考にしてください。

    7

    hawkbit_push_update でアップデートを CLI で扱う場合に作っておいてくダサい。 詳細は <sct.hawkbit_push_update>> を参照してください。

    8

    さらに、hawkbit_push_update でアップデートを実行までする場合は、この権限を許可してください。

    9

    ここでは http でテストのコンテナを作成するので、「N」のままで進みます。

    10

    コンテナを起動します。初期化が終わったら <IP>:8080 でアクセス可能になります。

    [ATDE ~]$ /usr/share/mkswu/hawkbit-compose/setup_container.sh
    docker-compose の設定ファイルと hawkBit のデータをどこに保存しますか? [/home/atmark/hawkbit-compose]
    setup_container.sh へのリンクを /home/atmark/hawkbit-compose に作ります。
    docker サービスに接続できませんでした。sudo でもう一度試します。
    OK!
    Hawkbit admin user name [admin]
    admin ユーザーのパスワード:
    パスワードを再入力してください:
    パスワードが一致しません。
    admin ユーザーのパスワード:
    パスワードを再入力してください:
    追加の管理人アカウントのユーザーネーム(空にすると追加しません)
    hawkBit の「device」ユーザーを登録しますか?(自動登録用) [Y/n]
    device ユーザーのパスワード:
    パスワードを再入力してください:
    hawkBit の「mkswu」ユーザーを登録しますか?(swuのアップロード用) [Y/n]
    ユーザーにロールアウトの権限を与えますか?(インストール要求を出すこと) [Y/n]
    mkswu ユーザーのパスワード:
    パスワードを再入力してください:
    Setup TLS reverse proxy? [y/N] y 1
    lighttpd が起動中で、リバースプロキシ設定と競合しています。
    lighthttpd サービスを停止しますか? [Y/n] 2
    Synchronizing state of lighttpd.service with SysV service script with /lib/systemd/systemd-sysv-install.
    Executing: /lib/systemd/systemd-sysv-install disable lighttpd
    Removed /etc/systemd/system/multi-user.target.wants/lighttpd.service.
    リバースプロキシの設定に証明書の domain name が必要です。
    この domain はこのままデバイスからアクセスできる名前にしてください。
    例えば、https://hawkbit.domain.tld でアクセスしたら hawkbit.domain.tld、
    https://10.1.1.1 でしたら 10.1.1.1 にしてください。
    証明書の domain name: 10.1.1.1 3
    証明書の有効期限を指定する必要があります。Let's encryptを使用する場合、
    この値は新しい証明書が生成されるまでしか使用されないので、デフォルトの値
    のままにしておくことができます。Let's encryptを使用しない場合、
    数年ごとに証明書を新しくすることが最も好ましです。
    証明書の有効期間は何日間にしますか? [3650] 4
    クライアントのTLS認証を設定するためにCAが必要です。
    署名CAのファイルパス(空にするとクライアントTLS認証を無効になります) [] 5
    サーバーが直接インタネットにアクセス可能であれば、Let's Encryptの証明書
    を設定することができます。TOSへの同意を意味します。
    https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf
    certbotコンテナを設定しますか? [y/N] 6
    
    /home/atmark/hawkbit-compose/data/nginx_certs/proxy.crt を /usr/local/share/ca-certificates/ にコピーして、 update-ca-certificates を実行する必要があります。
    このbase64でエンコードされたコピーをexamples/hawkbit_register.sh の
    SSL_CA_BASE64 に指定する手順が推奨されます。
    
    LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUJlekNDQVNHZ0F3SUJBZ0lVQTByZ0cwcTJF
    SFNnampmb0tUZWg3aGlaSVVVd0NnWUlLb1pJemowRUF3SXcKRXpFUk1BOEdBMVVFQXd3SU1UQXVN
    UzR4TGpFd0hoY05Nakl3TXpJMU1EVXhOVFU0V2hjTk16SXdNekl5TURVeApOVFU0V2pBVE1SRXdE
    d1lEVlFRRERBZ3hNQzR4TGpFdU1UQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VICkEwSUFC
    SDFFREhBN3NOTlFJUDlTdlhlUnNmWjl2dVVFWkRkMVE2TzViRlV2RTh4UjUwUlBCLzNlajMzd0VI
    NEoKYmZqb296bEpXaExlSG5SbGZsaHExVDlKdm5TalV6QlJNQjBHQTFVZERnUVdCQlFBUmYvSkdT
    dkVJek5xZ2JMNQpQamY2VGRpSk1EQWZCZ05WSFNNRUdEQVdnQlFBUmYvSkdTdkVJek5xZ2JMNVBq
    ZjZUZGlKTURBUEJnTlZIUk1CCkFmOEVCVEFEQVFIL01Bb0dDQ3FHU000OUJBTUNBMGdBTUVVQ0lD
    Nis3ZzJlZk1SRXl0RVk5WDhDNC8vUEw1U1kKWUlGZHUxVFZiUEZrSlV0SUFpRUE4bm1VSnVQSFlz
    SHg2N2ErZFRwSXZ1QmJUSG1KbWd6dUl3bTJ2RXppRnZRPQotLS0tLUVORCBDRVJUSUZJQ0FURS0t
    LS0tCg== 7
    
    
    Let's encryptの設定は後で足したい場合にsetup_container.shを--letsencryptで実行してください。
    
    コンテナの設定が完了しました。docker-compose コマンドでコンテナの管理が可能です。
    /home/atmark/hawkbit-compose/setup_container.sh を再び実行すると設定の変更が可能です。
    hawkBit コンテナを起動しますか? [Y/n]

    図10.100 hawkBit コンテナのTLSありの場合の実行例


    1

    今回は TLS を有効にしますので、「y」を答えます。

    2

    lighttpd サービスが起動している場合に聞かれます。不要なので、停止します。

    3

    証明書の common name を入力してください。ATDE の場合、 ポート転送によってホストのIPアドレスで接続しますのでそのアドレスを入力します。 Let’s encrypt を使用する場合には外部からアクセス可能なDNSを入力してください。

    4

    証明書の有効期間を設定します。デフォルトでは10年になっています。 Let’s encryptを使用する場合には使われていません。

    5

    クライアント側では x509 証明書で認証をとることができますが、この例では使用しません。

    6

    Let’s encrypt による証明書を作成できます。 ATDE の場合は外部からのアクセスが難しいので、この例では使用しません。

    7

    自己署名証明書を作成したので、 Armadillo に設置する必要があります。 この証明書の取扱いには 「SWU で hawkBit を登録する」 を参照してください。

  3. hawkBitへのログイン

    作成したコンテナによって http://<サーバーのIPアドレス>:8080https://<サーバーのアドレス> にアクセスすると、ログイン画面が表示されます。

    images/hawkBit_login.png

    デフォルトでは次のアカウントでログインできます。

    ユーザー

    admin

    パスワード

    admin

  4. ArmadilloをTargetに登録する

    左側のメニューから Deployment をクリックして、Deployment の画面に移ります。

    images/hawkBit_security_token.png

    "+"をクリックしてTargetを作成します。

    作成したターゲットをクリックすると、 下のペインに "Security token:<文字列>" と表示されるので、 <文字列>の部分をメモします。

    メモした<文字列>をArmadilloの /etc/swupdate.cfg に設定すると Hawkbit への接続認証が通るようになります。

  5. Target Filterを作成する

    左側のメニューから"Target Filters"をクリックして、Target Filters の画面に移ります。

    images/hawkBit_Target_filters.png

    "+" をクリックして新規にTarget Filterを作成します。

    images/hawkBit_Target_filters_new.png

    Filter name と 検索式を入力して保存します。

  6. Software moduleを作成する

    左側のメニューから"Upload"をクリックして、Upload Managementの画面に移ります。

    images/hawkBit_software_module.png

    "+" をクリックしてSoftware moduleを作成します。 type には OS/Application、 version には 任意の文字列を指定します。

  7. swuパッケージをアップロードしてSoftware moduleに関連付ける

    先程作成した Software module を選択して、ハイライトされた状態で、 "Upload File"ボタン、もしくは、ファイルをドラッグアンドドロップします。

    images/hawkBit_software_module_result.png
  8. Distributionを作成してSoftware moduleを関連付ける

    左側のメニューから"Distribution"をクリックして、Distribution Managementの画面に移ります。

    images/hawkBit_distribution.png

    "+" をクリックしてDistributionを作成します。 type には OS/OSwithApp/Apps、 version には任意の文字列を指定します。

    images/hawkBit_distribution_new.png

    "Software module"のペインから先程作成した Softwareをドラッグして、作成したDistributionの上にドロップします。

    images/hawkBit_Distribution_assignment.png
  9. Rolloutを作成してアップデートを開始する

    左側のメニューから"Rollout"をクリックして、Rollout Managementの画面に移ります。

    images/hawkBit_Rollouts.png

    "+"をクリックしてRolloutを作成します。

    images/hawkBit_Rollouts_new.png

    項目

    説明

    Name

    任意の文字列を設定します。

    Distribution Set

    先程作成したDistributionを選択します。

    Custom Target Filter

    先程作成したTarget Filterを選択します。

    Action Type

    アップデート処理をどのように行うかを設定します。 ・Forced/Soft: 通常のアップデート ・Time Forced: 指定した時刻までにアップデートする ・Download only: ダウンロードのみ行う

    Start Type

    Rollout の実行をどのように始めるかを設定します。 ・Manual: 後で手動で開始する ・Auto: Targetからのハートビートで開始する ・Scheduled: 決まった時間から開始する

  10. アップデートの状態を確認する。

    Rollout Managementの画面のDetail Statusで、各Rolloutのアップデートの状態を確認できます。

    アップデート中は黄色、アップデートが正常に完了すると緑色になります。

10.8.4.1. hawkBit のアップデート管理を CLI で行う

一つのアップデートを登録するには、hawkBit の Web UI で必要な手順が長いので CLI で行うことで 効率よく実行できます。

サーバーの設定の段階では、「mkswu」のユーザーを作成する必要があります。 作成していない場合は setup_container.sh --add-user mkswu で作成してください。

  1. hawkbit_push_update の実行例です
[ATDE ~/mkswu]$ ls enable_sshd.swu 1
enable_sshd.swu

[ATDE ~/mkswu]$ hawkbit_push_update --help
Usage: /usr/bin/hawkbit_push_update [options] file.swu

rollout creation:
  --no-rollout: only upload the file without creating a rollout 2
  --new: create new rollout even if there already is an existing one 3
  --failed: Apply rollout only to nodes that previously failed update 4

post action:
  --start: start rollout immediately after creation 5

[ATDE ~/mkswu]$ hawkbit_push_update --start enable_sshd.swu 6
Uploaded (or checked) image extra_os.sshd 1 successfully
Created rollout extra_os.sshd 1 successfully
Started extra_os.sshd 1 successfully

1

この例ではあらかじめ作成されてる enable_sshd.swu を hawkBit に登録します。

2

--no-rollout を使う場合に SWU を「distribution」として登録します。 デフォルトでは rollout も作成します。 テストする際、デバイスがまだ登録されていなければ rollout の段階で失敗します。

3

同じ SWU で rollout を二回作成した場合にエラーが出ます。 もう一度作りたい場合は --new を使ってください。

4

一度 rollout をスタートして、 Armadillo で失敗した場合には 失敗したデバイスだけに対応した rollout を作れます。

5

作成した rollout をすぐ実行します。このオプションには追加の権限を許可する必要があります。

6

スタートまで行う実行例です。実行結果は Web UI で表示されます。

10.8.4.2. SWU で hawkBit を登録する

デバイスが多い場合は、SWUを一度作って armadillo を自己登録させることができます。

サーバーの設定の段階では、「device」のユーザーを作成する必要があります。 作成していない場合は setup_container.sh --add-user device で作成してください。

  1. hawkbit_register.desc で hawkBit の自己登録を行う例
[ATDE ~]$ cd mkswu/

[ATDE ~/mkswu]$ cp /usr/share/mkswu/examples/hawkbit_register.* . 1

[ATDE ~/mkswu]$ vi hawkbit_register.sh 2
# Script configuration: edit this if required!
# user given here must have CREATE_TARGET,READ_TARGET_SECURITY_TOKEN permissions
HAWKBIT_USER=device
HAWKBIT_PASSWORD="CS=wC,zJmrQeeKT.3" 3
HAWKBIT_URL=https://10.1.1.1 4
HAWKBIT_TENANT=default
# set custom options for suricatta block or in general in the config
CUSTOM_SWUPDATE_SURICATTA_CFG="" # e.g. "polldelay = 86400;"
CUSTOM_SWUPDATE_CFG=""
# set to non-empty if server certificate is invalid
SSL_NO_CHECK_CERT=
# or set to cafile that must have been updated first
SSL_CAFILE=
# ... or paste here base64 encoded crt content
SSL_CA_BASE64="
LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUJlakNDQVNHZ0F3SUJBZ0lVYTMvYXpNSHZ0
bFFnaFZnZDhIZWhMaEwxNm5Bd0NnWUlLb1pJemowRUF3SXcKRXpFUk1BOEdBMVVFQXd3SU1UQXVN
UzR4TGpFd0hoY05Nakl3TWpFNE1EVTFNakV6V2hjTk16SXdNakUyTURVMQpNakV6V2pBVE1SRXdE
d1lEVlFRRERBZ3hNQzR4TGpFdU1UQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VICkEwSUFC
RFJGcnJVV3hHNnBHdWVoejRkRzVqYkVWTm5scHUwYXBHT1c3UVBPYUF4cWp1ZzJWYjk2UHNScWJY
Sk8KbEFDVVo2OStaMHk3clBqeDJHYnhDNms0czFHalV6QlJNQjBHQTFVZERnUVdCQlJtZzhxL2FV
OURRc3EvTGE1TgpaWFdkTHROUmNEQWZCZ05WSFNNRUdEQVdnQlJtZzhxL2FVOURRc3EvTGE1TlpY
V2RMdE5SY0RBUEJnTlZIUk1CCkFmOEVCVEFEQVFIL01Bb0dDQ3FHU000OUJBTUNBMGNBTUVRQ0lB
ZTRCQ0xKREpWZnFTQVdRcVBqNTFmMjJvQkYKRmVBbVlGY2VBMU45dE8rN0FpQXVvUEV1VGFxWjhH
UFYyRUg1UWdOMFRKS05SckJDOEtpNkZWcFlkRUowYWc9PQotLS0tLUVORCBDRVJUSUZJQ0FURS0t
LS0tCg== 5
"
# ... or add your own options if required
CURLOPT=-s

: (省略)

[ATDE ~/mkswu]$ cat hawkbit_register.desc 6
: (省略)
swdesc_script hawkbit_register.sh --version extra_os.hawkbit 1

[ATDE ~/mkswu]$ mkswu hawkbit_register.desc 7
hawkbit_register.swu を作成しました。

[ATDE ~/mkswu]$ mkswu initial_setup.desc hawkbit_register.desc 8
hawkbit_register.desc を組み込みました。
initial_setup.swu を作成しました。

1

hawkbit_register.sh と .desc ファイルをカレントディレクトリにコピーします。

2

hawkbit_register.sh を編集して、設定を記載します。

3

hawkBit の設定の時に選んだ「device」ユーザーのパスワードを入力します。この例のパスワードは使用しないでください。

4

hawkBit サーバーのURLを入力します。

5

TLS を使用の場合に、コンテナ作成の時の証明書を base64 で入力します。

6

hawkbit_register.desc の中身を確認します。hawkbit_register.sh を実行するだけです。

7

SWU を作成して、initial_setupがすでにインストール済みの Armadillo にインストールできます。

8

または、initial_setup.desc と合わせて hawkbit_register を含んだ initial_setup.swu を作成します。

10.8.5. mkswu の desc ファイル

.desc ファイルを編集して、いくつかのコマンドが使えます。

[ATDE ~/mkswu]$ tree /usr/share/mkswu/examples/nginx_start
/usr/share/mkswu/examples/nginx_start
└── etc
    └── atmark
        └── containers
            └── nginx.conf

[ATDE ~/mkswu]$ cat /usr/share/mkswu/examples/usb_container_nginx.desc
swdesc_option version=1

swdesc_usb_container "nginx_alpine.tar" 1
swdesc_files --extra-os "nginx_start" 2

1

nginx_alpine.tar ファイルに保存されたコンテナをインストールします。

2

nginx_start ディレクトリーの中身を転送します。

コマンドは書かれた順番でインストールします。インストールするかどうかの判断はバージョンで行います:

swdesc_option component=<component>
swdesc_option version=<version>
か
swdesc_xxx --version <component> <version> [options]
  • <component>は以下のどれかにしてください (デフォルトでは .desc ファイルのファイル名を使います)

    1. base_os: rootfs (Armadillo Base OS)を最初から書き込む時に使います。現在のファイルシステムは保存されていない。

      この場合、/etc/swupdate_preserve_filesに載ってるファイルのみをコピーして新しいbase OSを展開します。

      このcomponentがないと現在のrootfsのすべてがコピーされます。

    2. extra_os.<文字列>: rootfsの変更を行う時に使います。<文字列> には任意の文字列を指定します。

      rootfsを変更を行う時に使います。 swdesc_* コマンドに --extra-os オプションを追加すると、 component に自動的に extra_os. を足します。

    3. <文字列> (コンテナの名前などの任意の文字列): rootfsの変更がないときに使います。

      このcomponentを使うとrootfsの変更ができませんのでご注意ください。

  • アップデートをインストールする際にこのバージョンと現在のバージョンを比べてアップデートの判断します。

    <component> がまだインストールされてなかった時か <version> が上がる時にインストールします。

    デフォルトではダウングレードはできませんが、 --install-if=different オプションを追加することで <version> が変わる際にインストール可能になります。

    アップデートの一部をインストールすることもありますので、複数の component で管理し、いくつかの古いバージョンに対応するアップデートも作成可能です。

以下のコマンドから使ってください

  • swdesc_tarswdesc_files でファイルを転送します。

    swdesc_tar [--dest <dest>] <tar_file>
    swdesc_files [--dest <dest>] [--basedir <basedir>] \
                 <file> [<more files>]

    swdesc_tar の場合、予め用意されてあるtarアーカイブをこのままデバイスで展開します。

    --dest <dest> で展開先を選ぶことができます。デフォルトは /--extra-os を含め、バージョンの component は base_osextra_os.* の場合)か /var/app/rollback/volumes/ (それ以外のcomponent)。 後者の場合は /var/app/volumes/var/app/rollback/volumes 以外は書けないので必要な場合に --extra-os を使ってください。

    swdesc_files の場合、mkswu がアーカイブを作ってくれますが同じ仕組みです。

    --basedir <basedir> でアーカイブ内のパスをどこで切るかを決めます。

    • 例えば、swdesc_files --extra-os --basedir /dir /dir/subdir/file ではデバイスに /subdir/file を作成します。
    • デフォルトは <file> から設定されます。ディレクトリであればそのまま basedir として使います。それ以外であれば親ディレクトリを使います。
  • swdesc_commandswdesc_script でコマンドを実行する

    swdesc_command <command> [<more commands>]
    swdesc_script <script>

    アップデート先の環境でコマンドやスクリプトファイルを走らせます。

    バージョンの component は base_osextra_os 以外の場合、 /var/app/volumes/var/app/rollback/volumes 以外何も変更できないのでご注意ください。

    コマンドが成功しないとアップデートが失敗します。

  • swdesc_exec でファイルを配ってコマンドでそのファイルを使う

    swdesc_exec <file> <command>

    swdesc_command と同じくコマンドを走らせますが、<file> を先に転送してコマンド内で"$1"として使えます。

  • swdesc_command_nochroot, swdesc_script_nochroot, swdesc_exec_nochroot で起動中のシステム上でコマンドを実行します。

    このコマンドは nochroot なしのバージョンと同じ使い方で、現在起動中のシステムに変更や確認が必要な場合にのみ使用してください。

    [警告]

    nochroot コマンドは確認を一切しないため、Armadillo が起動できない状態になる可能性もあります:充分にご注意ください。

    例が必要な場合は /usr/share/mkswu/examples/firmware_update.desc を参考にしてください。

  • swdesc_embed_container, swdesc_usb_container, swdesc_pull_container で予め作成したコンテナを転送します。

    swdesc_embed_container <container_archive>
    swdesc_usb_container <container_archive>
    swdesc_pull_container <container_url>

    例は「コンテナの配布」を参考にしてください。

  • swdesc_bootimx-boot を更新します。

    swdesc_boot <boot image>

    このコマンドだけにバージョンは自動的に設定されます。

コマンドの他には、設定変数もあります。以下の設定は /home/atmark/mkswu/mkswu.conf に設定できます。

  • DESCRIPTION="<text>": 自由なイメージの説明、ログに残ります。
  • PRIVKEY=<path>, PUBKEY=<path>: 署名鍵と証明書
  • PRIVKEY_PASS=<val>: 鍵のパスワード(自動用)

    openssl のPass Phraseをそのまま使いますので、pass:password, env:varfile:pathname のどれかを使えます。 passenv の場合他のプロセスに見られる恐れがありますのでfileをおすすめします。

  • ENCRYPT_KEYFILE=<path>: 暗号化の鍵

以下のオプションも mkswu.conf に設定できますが、.descファイルにも設定可能です。swdesc_option で指定することで、 誤った使い方した場合 mkswu の段階でエラーを出力しますので、必要な場合は使用してください。

  • swdesc_option CONTAINER_CLEAR: インストールされたあるコンテナと /etc/atmark/containers/*.conf をすべて削除します。

    このオプションは簡単な初期化と考えてください。通常の運用では、不要になったイメージは自動的に削除されますので このオプションを設定する必要はありません。

以下のオプションは Armadillo 上の /etc/atmark/baseos.conf に、例えば MKSWU_POST_ACTION=xxx として設定することができます。

その場合に swu に設定されなければ /etc の設定で実行されますので、 アットマークテクノが用意している Base OS のアップデートでも動作の変更は可能です。 swu に特定なオプションが設定された場合に設定されたオプションが優先されますので一時的な変更も可能です。

  • swdesc_option POST_ACTION=container: コンテナのみのアップデート後に再起動を行いません。 コンテナの中身だけをアップデートする場合、Armadillo-IoT ゲートウェイ A6Eを再起動せずにコンテナだけを再起動させます。
  • swdesc_option POST_ACTION=poweroff: アップデート後にシャットダウンを行います。
  • swdesc_option POST_ACTION=wait: アップデート後に自動的に再起動は行われず、次回起動時にアップデートが適用されます。
  • swdesc_option POST_ACTION=reboot: デフォルトの状態に戻します。アップデートの後に再起動します。
  • swdesc_option NOTIFY_STARTING_CMD="command", swdesc_option NOTIFY_SUCCESS_CMD="command", swdesc_option NOTIFY_FAIL_CMD="command": アップデートをインストール中、成功した場合と失敗した場合に実行されるコマンドです。

    コマンドを実行する事で、アプリケーションやユーザーにアップデートを知らせることができます。

    LEDで知らせる例を /usr/share/mkswu/examples/enable_notify_led.desc に用意してあります。

10.8.5.1. 例: sshdを有効にする

/usr/share/mkswu/examples/enable_sshd.desc を参考にします。

descファイルを編集する必要がありませんが自分の公開鍵を指定された場所に配置してください。

[ATDE ~/mkswu]$ cp -r /usr/share/mkswu/examples/enable_sshd* .
[ATDE ~/mkswu]$ cat enable_sshd.desc
swdesc_option component=extra_os.sshd version=1

# add your public key in enable_sshd/root/.ssh/authorized_keys
if [ -z "$SWDESC_TEST" ]; then
    grep -qE '^ssh-' enable_sshd/root/.ssh/authorized_keys \
        || error "Add your keys in enable_sshd/root/.ssh/authorized_keys"
fi
swdesc_files --dest /root enable_sshd/root 1

swdesc_command "ssh-keygen -A" \ 2
        "rc-update add sshd" 3
[ATDE ~/mkswu]$ cp ~/.ssh/id_rsa.pub \
                         enable_sshd/root/.ssh/authorized_keys 4
[ATDE ~/mkswu]$ mkswu enable_sshd.desc 5
Enter pass phrase for /home/atmark/mkswu/swupdate.key:
enable_sshd.swu を作成しました。

1

自分の公開鍵を転送します。デフォルトのオプションなので enable_sshd/root ディレクトリの中身をこのまま /root に転送されます。

2

再起動する度に新しいサーバーの鍵が変わらないように、アップデートの時に一回作成します。

3

サービスを有効にします。

4

自分の公開鍵を指定された場所に配置します。

5

イメージを作成します。パスワードは証明鍵のパスワードです。

10.8.5.2. 例: Armadillo Base OSアップデート

ここでは、「Armadilloのソフトウェアをビルドする」 でメインシステム向けのビルドで作成したファイルを使用します。

/usr/share/mkswu/examples/OS_update.desc を参考にします。

[ATDE ~/mkswu]$ cp /usr/share/mkswu/examples/OS_update.desc update-[VERSION].desc
[ATDE ~/mkswu]$ vi update-[VERSION].desc
# uboot image can be generated with atmark imx-boot script
swdesc_uboot imx-boot_armadillo_x2 1

# base OS is a tar that will be extracted on a blank filesystem,
# after copying just a few key config files.
#
# OS updates are only installed if version is greater than previous update
# so if you install your own updates atmark-techno provided Armadillo Base OS
# updates might not get installed
swdesc_tar "baseos-x2-[VERSION].tar.zst" \ 2
           --version base_os [VERSION] 3
[ATDE ~/mkswu]$ mkswu update-[VERSION].desc 4
Enter pass phrase for /home/atmark/mkswu/swupdate.key:
update-[VERSION].swu を作成しました。

1

imx-bootでビルドしたイメージを使います。

2

build-rootfsでビルドしたイメージを使います。

3

バージョンを上がるときにしかインストールされませんので、現在の/etc/sw-versionsを見て上がるように設定してください。

4

イメージを作成します。パスワードは証明鍵の時のパスワードです。

10.8.5.3. 例: swupdate_preserve_files で Linux カーネル以外の Armadillo-IoT ゲートウェイ A6E 向けのイメージをインストールする方法

Armadillo-IoT ゲートウェイ A6E 向けのアップデートイメージに Linux カーネルが含まれています。

swupdate_preserve_files を使って、以下のコマンドでインストール後に現在のカーネルをコピーして更新させないようにします。

[armadillo ~]# echo 'POST /boot' >> /etc/swupdate_preserve_files
[armadillo ~]# echo 'POST /lib/modules' >> /etc/swupdate_preserve_files 1
[armadillo ~]# persist_file /etc/swupdate_preserve_files 2

1

swupdate_preserve_files/boot/lib/modules を保存するように追加します。

2

変更した設定ファイルを保存します

[ティップ]

/usr/share/mkswu/examples/kernel_update*.desc のように update_preserve_files.sh のヘルパーで、パスを自動的に /etc/swupdate_preserve_files に追加することができます。

[ATDE ~/mkswu]$ cp /usr/share/mkswu/examples/update_preserve_files.sh .
[ATDE ~/mkswu]$ cat example.desc
swdesc_script update_preserve_files.sh -- \
        "POST /boot" \
        "POST /lib/modules"

10.8.6. swupdate_preserve_files について

extra_os のアップデートで rootfs にファイルを配置することができますが、次の OS アップデートの際に削除される可能性があります。

デフォルトでは、 /etc/atmark と、 swupdatesshd やネットワークの設定を保存しますがそれ以外はコピーされてません。

そうでないファイルを更新する際には /etc/swupdate_preserve_files に記載します。「例: swupdate_preserve_files で Linux カーネル以外の Armadillo-IoT ゲートウェイ A6E 向けのイメージをインストールする方法」 を参考にしてください。

コピーのタイミングによって、以下のどれかを使ってください:

  1. 単にファイルを記載する。

    この場合、アップデートする前にファイルをコピーします。 baseos のイメージと同じ swu にアップデートしたいファイルを記載していても、 このファイルが Armadillo Base OS に含まれないのであれば問題なくアップデートできます。

    : echo "/root/.profile" >> /etc/swupdate_preserve_files

  2. POST のキーワードの後に記載する。

    この場合、アップデートの最後でコピーします。 Armadillo Base OS に含まれてるファイルであれば、インストール前にコピーしても保存されないのでコピーのタイミングをずらします。

    そのコピーが最後に行われるので、同じアップデートでファイルの変更ができません。アップデートを別けて、 baseos のイメージをインストールしてからこのファイルを更新することができます。

    : echo "POST /etc/conf.d/podman-atmark" >> /etc/swupdate_preserve_files

10.8.7. SWU イメージの内容の確認

mkswu --show [file.swu] で SWU イメージの内容を確認することができます。

出力は desc ファイルに似ていますが、そのまま desc ファイルとして利用できませんので確認だけにお使いください。

[ATDE ~/mkswu]$ mkswu --show enable_sshd.swu
enable_sshd.swu

# built with mkswu 4.1

swdesc_files --dest /root enable_sshd/root
  --version extra_os.sshd 1
  (encrypted)

swdesc_command ssh-keygen -A && rc-update add sshd default
  --version extra_os.sshd 1

10.8.8. SWUpdate と暗号化について

mkswu --init の時に暗号化を有効にする場合は AES でファイルを暗号化します。

現在使われてる SWUpdate の暗号化はコマンドやメタデータを含む sw-description ファイルは暗号化されてません。 そのため、通信の暗号化(HTTPSで送信するなど)を使うことを推奨します。

10.9. Armadillo Base OS の操作

Armadillo Base OS は Alpine OS をベースとして作られています。

このセクションでは Armadillo Base OS の機能を紹介します。

10.9.1. アップデート

Armadillo Base OS は SWUpdate によってアップデートすることができます。

アップデートする際には、rootfs ファイルシステムにインストールされたファイルをすべて消して、アップデートの中身と /etc/swupdate_preserve_files に記載されているファイルで新しい rootfs を作ります。

アップデートでファイルを削除してしまった場合に abos-ctrl mount-old で前のシステムを read-only でマウントして、 削除されたファイルをコピーすることもできます。

10.9.2. overlayfs と persist_file について

Armadillo BaseOS ではルートファイルシステムに overlayfs を採用しています。

そのため、ファイルを変更した後 Armadillo の電源を切ると変更内容は保持されません。 開発中などに rootfs の変更内容を保持するには、変更したファイルに対して persist_file コマンドを使用します。

開発以外の時は安全のため、ソフトウェアアップデートによる更新を実行してください。 アップデート手順に関しては 「Armadilloのソフトウェアをアップデートする」 を参照してください。

rootfs の内容を変更しても、ソフトウェアアップデートを実施した際に変更した内容が保持されない可能性があります。

persist_file コマンドの概要を 図10.101「persist_file のヘルプ」 に示します。

[armadillo ~]# persist_file -h
Usage: /usr/bin/persist_file [options] file [more files...]

Mode selection:
  (none) single entry copy
  -d, --delete   delete file
  -l, --list     list content of overlay
  -a, --apk      apk mode: pass any argument after that to apk on rootfs
  -R, --revert   revert change: only delete from overlay, making it
                 look like the file was reverted back to original state

Copy options:
  -r, --recurse  recursive copy (note this also removes files!)
  -p, --preserve make the copy persist through baseos upgrade
                 by adding entries to /etc/swupdate_preserve_files
  -P, --preserve-post   same, but copy after upgrade (POST)

Delete options:
  -r, --recurse  recursively delete files

Common options:
  -v, --verbose  verbose mode for all underlying commands

Note this directly manipulates overlayfs lower directories
so might need a reboot to take effect

図10.101 persist_file のヘルプ


  1. ファイルの保存・削除手順例

    [armadillo ~]# echo test > test
    [armadillo ~]# persist_file -rv /root
    '/root/test' -> '/mnt/root/test' 1
    '/root/.ash_history' -> '/mnt/root/.ash_history'
    [armadillo ~]# rm -f test
    [armadillo ~]# persist_file -rv /root
    removed '/mnt/root/test' 2
    removed '/mnt/root/.ash_history' 3
    '/root/.ash_history' -> '/mnt/root/.ash_history'

    図10.102 persist_file 保存・削除手順例


    1

    追加・変更したファイルを rootfs へコピーします。

    2

    -r を指定すると、ひとつ前の rm -f コマンドで削除したファイルがrootfsからも削除されますのでご注意ください。

    3

    すでに rootfs に存在するファイルも一度削除してからコピーするため、このようなメッセージが表示されます。

  2. ソフトウェアアップデート後も変更を維持する手順例

    [armadillo ~]# vi /etc/conf.d/podman-atmark 1
    [armadillo ~]# persist_file -P /etc/conf.d/podman-atmark 2
    [armadillo ~]# tail -n 2 /etc/swupdate_preserve_files 3
    # persist_file 20211216
    POST /etc/conf.d/podman-atmark

    図10.103 persist_file ソフトウェアアップデート後も変更を維持する手順例


    1

    何らかのファイルの内容を変更します。

    2

    -P オプションを付与して persist_file を実行します。

    3

    swupdate_preserve_files に追加されたことを確認します。

  3. 変更ファイルの一覧表示例

    [armadillo ~]# mkdir dir
    [armadillo ~]# persist_file -l
    directory          /
    directory          /root
    opaque directory   /root/dir 1
    whiteout           /root/test 2
    regular file       /root/.ash_history
    directory          /etc
    regular file       /etc/resolv.conf
    directory          /var
    symbolic link      /var/lock
    : (省略)

    図10.104 persist_file 変更ファイルの一覧表示例


    1

    rootfs のファイルを見せないディレクトリは opaque directory と表示されます。

    2

    削除したファイルは whiteout と表示されます。

  4. パッケージをインストールする時はapkコマンドを使用してメモリ上にインストールできますが、 persist_file コマンドで rootfs に直接インストールすることも可能です。

    [armadillo ~]# persist_file -a add strace
    (1/3) Installing fts (1.2.7-r1)
    (2/3) Installing libelf (0.185-r0)
    (3/3) Installing strace (5.14-r0)
    Executing busybox-1.34.1-r3.trigger
    OK: 251 MiB in 188 packages
    Install succeeded, but might not work in the running system
    Please reboot if installed program does not work 1
    [armadillo ~]# strace ls
    : (省略)
    exit_group(0)                           = ?
    +++ exited with 0 +++

    図10.105 persist_file でのパッケージインストール手順例


    1

    この例では Armadillo を再起動せずにインストールしたコマンドを使用できましたが、Armadillo の再起動が必要となるパッケージもありますので、その場合は Armadillo を再起動してください。

10.9.3. ロールバック状態の確認

Armadillo Base OS の ルートファイルシステムが壊れて起動できなくなった場合に自動的に前のバージョンで再起動します。

自分で確認する必要がある場合に abos-ctrl status でロールバックされてるかどうかの確認ができます。

必要な場合(例えば、自分のアプリケーションがアップデート直後に問題があった場合)、 abos-ctrl rollback で手動のロールバックも可能です。ロールバックにエラーがなければ、再起動してロールバックを完了します。

なお、/var/at-log/atlog に切り替えの際に必ずログを書きますので、調査の時に使ってください。

[armadillo ~]# cat /var/at-log/atlog
Mar 17 14:51:35 armadillo NOTICE swupdate: Installed update to /dev/mmcblk0p2: \
extra_os.sshd: unset -> 1, extra_os.initial_setup: unset -> 1
Mar 17 16:48:52 armadillo NOTICE swupdate: Installed update to /dev/mmcblk0p1: \
boot: 2020.04-at5 -> 2020.04-at6, base_os: 3.15.0-at.3 -> 3.15.0-at.4
Mar 17 17:42:15 armadillo NOTICE swupdate: Installed update to /dev/mmcblk0p2: \
other_boot: 2020.04-at5 -> 2020.04-at6, container: unset -> 1, extra_os.container: unset -> 1

図10.106 /var/at-log/atlog の内容の例


10.9.4. u-boot の環境変数の設定

u-boot の環境変数を変更するには /boot/uboot_env.d/ ディレクトリに環境変数が書かれた設定ファイルを配置します。

ファイルの構文は fw_setenv が扱うことができるもので、以下のとおりです:

  • # で始まる行はコメントと扱われる為、無視されます。また、 環境変数への代入を示す = がない場合も無視されます。
  • [変数]=[値] で変数を設定します。スペースや引用符を含め他の文字は有効ですので、変数の名前と値に不要な文字を入れないように注意してください。
  • [変数]= で変数を消します。値がない場合に変数が消去されます。

このファイルによるアップデート内容は swupdate でアップデートする際に適用されます。

実行中のシステムに影響がありませんので、設定ファイルを swupdate で転送しない場合はファイル永続化後に fw_setenv -s /boot/uboot_env.d/[ファイル名] で変数を書き込んでください。

swupdate でファイルを転送した場合は変数をすぐに利用されます。

[armadillo ~]# vi /boot/uboot_env.d/no_prompt 1
# bootdelay を -2 に設定することで u-boot のプロンプトを無効化します
bootdelay=-2
[armadillo ~]# persist_file -v /boot/uboot_env.d/no_prompt 2
'/boot/uboot_env.d/no_prompt' -> '/mnt/boot/uboot_env.d/no_prompt'
[armadillo ~]# fw_setenv -s /boot/uboot_env.d/no_prompt 3
Environment OK, copy 0
[armadillo ~]# fw_printenv | grep bootdelay 4
bootdelay=-2

図10.107 uboot_env.d のコンフィグファイルの例


1

コンフィグファイルを生成します。

2

ファイルを永続化します。

3

変数を書き込みます。

4

書き込んだ変数を確認します。

[注記]

mkswu バージョン 4.4 以降が必要です。必要な場合はアップデートしてください。

[ATDE ~]$ sudo apt update && sudo apt upgrade

書き方は、 /usr/share/mkswu/examples/uboot_env.desc を参考にしてください。

[警告]

「ブートローダーをビルドする」 の際に u-boot のデフォルトを変更した場合や、u-boot のプロンプトで「setenv」や「saveenv」を実行しても、 /boot/uboot_env.d/00_defaults によって変更がアップデートの際にリセットされます。

00_defaults のファイルは Base OS の一部で更新されることもありますので、変更を望む場合は別のファイルを作って設定してください。 ファイルはアルファベット順で処理されます。 00_defaults にある変数を後のファイルにも設定した場合はそのファイルの値だけが残ります。

10.10. Device Treeをカスタマイズする

a

10.11. eMMC のデータリテンション

eMMC は主に NAND Flash メモリから構成されるデバイスです。NAND Flash メモリには書き込みしてから1年から3年程度の長期間データが読み出されないと電荷が抜けてしまう可能性があります。その際、電荷が抜けて正しくデータが読めない場合は、eMMC 内部で ECC (Error Correcting Code) を利用してデータを訂正します。しかし、訂正ができないほどにデータが化けてしまう場合もあります。そのため、一度書いてから長期間利用しない、高温の環境で利用するなどのケースでは、データ保持期間内に電荷の補充が必要になります。電荷の補充にはデータの読み出し処理を実行し、このデータの読み出し処理をデータリテンションと呼びます。

Armadillo-IoT ゲートウェイ A6Eに搭載のeMMCは、eMMC自身にデータリテンション機能が備わっており、A6Eに電源が接続されてeMMCに電源供給されている状態で、eMMC内部でデータリテンション処理が自動実行されます。

10.12. SMS を利用する (Cat.M1 モデルのみ)

Armadillo-IoT ゲートウェイ A6E は、LTE モジュール を使用した SMS の送受信を行うことができます。 SMS の送信、受信した SMS の確認および削除などの操作は ModemManager の mmcli コマンドで行うことができます。

本章では mmcli コマンドでの SMS の使用方法について説明します。

10.12.1. 初期設定

SMS が利用可能な SIM を挿入して Armadillo-IoT ゲートウェイ A6E の電源を入れると、 ModemManager が必要な初期設定を行い、 SMS が利用可能になります。

SMS の受信は自動的に行われます。

図10.108「言語設定」に示すコマンドを実行し、言語設定を行います。

[armadillo ~]# export LANG="ja_JP.UTF-8"

図10.108 言語設定


10.12.2. SMS を送信する

SMS を作成するには、図10.109「SMS の作成」に示すコマンドを実行します。

[armadillo ~]# mmcli -m 0 --messaging-create-sms="number=[送信先電話番号],text='[SMS 本文]'"

図10.109 SMS の作成


SMSの作成に成功すると、以下のようにSMS番号が表示されます。SMS番号は送信時に使用します。

Successfully created new SMS: /org/freedesktop/ModemManager1/SMS/[SMS 番号]

図10.110 SMS 番号の確認


図10.111「SMS の送信」に示すコマンドを実行し、SMS 送信を行います。 [SMS番号] には、 SMS の作成時に表示された番号を指定します。

[armadillo ~]# mmcli -s [SMS 番号] --send

図10.111 SMS の送信


10.12.3. SMS を受信する

SMS を送信可能な端末から Armadillo-IoT ゲートウェイ A6E に SMS を送信すると、 Armadillo-IoT ゲートウェイ A6E は自動的に SMS を受信します。

また、 EMS31-J の内蔵ストレージに 10 件 SMS を保存した状態で Armadillo-IoT ゲートウェイ A6E に SMS を送信した場合は、Armadillo-IoT ゲートウェイ A6E は受信を行いません。

受信を行うには、 EMS31-J の内蔵ストレージに保存している SMS を削除するか、他のストレージに移動する必要があります。

10.12.4. SMS 一覧を表示する

図10.112「SMS の一覧表示」のコマンドを実行することで、 SMS 一覧を表示できます。

末尾が "(sent)" となっているものが送信した SMS で "(received)" となっているものが受信した SMS です。

[armadillo ~]# mmcli -m 0 --messaging-list-sms
Found 7 SMS messages:
         /org/freedesktop/ModemManager1/SMS/0 (received)
         /org/freedesktop/ModemManager1/SMS/1 (received)
         /org/freedesktop/ModemManager1/SMS/2 (received)
         /org/freedesktop/ModemManager1/SMS/3 (received)
         /org/freedesktop/ModemManager1/SMS/4 (sent)
         /org/freedesktop/ModemManager1/SMS/5 (received)
         /org/freedesktop/ModemManager1/SMS/6 (sent)

図10.112 SMS の一覧表示


10.12.5. SMS の内容を表示する

SMS の内容を表示するには、図10.113「SMSの内容を表示」に示すコマンドを実行します。

[armadillo ~]# mmcli -s [SMS 番号]
  ----------------------------------
  Content    |              number: XXXXXXXXXXX
             |                text: hello world
  ----------------------------------
  Properties |            PDU type: deliver
             |               state: received
             |             storage: me
             |                smsc: +XXXXXXXXXXXX
             |           timestamp: XXXXXXXXXXXX+XX

図10.113 SMSの内容を表示


受信した SMS は自動的に LTE モジュールの内蔵ストレージに保存されます。Armadillo-IoT ゲートウェイ A6E に搭載されている、 EMS31-J は、最大 10 件まで SMS を保存することが可能です。

SMS の内容を表示した際の「storage: me」は、 LTE モジュールの内蔵ストレージに SMS が保存されていることを意味しています。

「storage: sm」と表示された場合、 SIM カードのストレージに SMS が保存されています。 SIM カードのストレージに保存できる SMS の件数は SIM カードによって異なります。

ストレージに保存されている SMS は、Armadillo-IoT ゲートウェイ A6E の電源を切断してもデータが保持されます。

10.12.6. SMS を削除する

SMS を削除するには、図10.114「SMSの削除」に示すコマンドを実行します。

[armadillo ~]# mmcli -m 0 --messaging-delete-sms=[SMS 番号]

図10.114 SMSの削除


10.12.7. SMS を他のストレージに移動する

SIM カードのストレージに SMS を移動するには、図10.115「SIM カードのストレージに SMS を移動」に示すコマンドを実行します。

[armadillo ~]# mmcli -s [SMS 番号] --store-in-storage="sm"

図10.115 SIM カードのストレージに SMS を移動


LTE モジュールの内蔵ストレージに SMS を移動するには、図10.116「LTE モジュールの内蔵ストレージに SMS を移動」に示すコマンドを実行します。

[armadillo ~]# mmcli -s [SMS 番号] --store-in-storage="me"

図10.116 LTE モジュールの内蔵ストレージに SMS を移動