本章では、Armadillo-IoT のソフトウェアをカスタマイズをする方法などについて説明します。
コンフィギュレーションを変更してLinuxカーネルイメージをカスタマイズする方法を説明します。
手順22.1 イメージをカスタマイズ Linuxカーネルアーカイブの展開
Linuxカーネルのソースコードアーカイブと、initramfsアーカイブを準備し、Linuxカーネルのソースコードアーカイブを展開します。
initramfsアーカイブへのシンボリックリンク作成
Linuxカーネルディレクトリに移動して、initramfsアーカイブへのシンボリックリンク作成します。
コンフィギュレーション
コンフィギュレーションをします。
カーネルコンフィギュレーションの変更
カーネルコンフィギュレーションを変更後、"Exit"を選択して「Do you wish to save your new kernel configuration ? <ESC><ESC> to continue.」で"Yes"とし、カーネルコンフィギュレーションを確定します。
| |
---|
Linux Kernel Configurationメニューで"/"キーを押下すると、カーネルコンフィギュレーションの検索を行うことができます。カーネルコンフィギュレーションのシンボル名(の一部)を入力して"Ok"を選択すると、部分一致するシンボル名を持つカーネルコンフィギュレーションの情報が一覧されます。
|
ビルド
ビルドするには、次のようにコマンドを実行します。
イメージファイルの生成確認
ビルドが終了すると、arch/arm/boot/ディレクトリとarch/arm/boot/dts/以下に、イメージファイル(LinuxカーネルとDTB)が作成されています。
22.2. ルートファイルシステムへの書き込みと電源断からの保護機能
Armadillo-IoT G3のルートファイルシステムは、標準で eMMC に配置されます。
Linux が稼動している間は、ログや、設定ファイル、各種アプリケーション
によるファイルへの書き込みが発生します。もし、停電等で終了処理を実行できずに
電源を遮断した場合はRAM上に残ったキャッシュがeMMCに書き込まれずに、
ファイルシステムの破綻やファイルの内容が古いままになる状況が発生します。
また、eMMC内部の NAND Flash Memory には消去回数に上限があるため、書き込み
回数を制限することを検討する必要がある場合もあります。
そこで、Armadillo-IoT G3 では、overlayfs を利用して、eMMCへの書き込み保護を行う機能を提供しています。
eMMCへの書き込み保護を使うには、kernelの起動オプションに"overlay=50%" ("=50%" は省略可、"overlay"のみ書くとRAMの50%を使用)というパラメタを追加するだけです。
パラメタを追加すると、debian の起動前に initramfs によってルートファイルシステムが upper=RAMディスク(tmpfs)、
lower=eMMC(ext4)としたoverlayfs に切り替えられて、Debianが起動します。
overlayfs の機能によって、起動後のルートファイルシステムに対する差分は、
全てRAMディスク( /overlay/ramdisk にマウント) に記録されるようになりま
す。そのため、起動後の情報は保存されませんが、電源を遮断した場合でも、
eMMCは起動前と変らない状態のまま維持されています。
kernelの起動オプションの指定を行うにはArmadillo-IoT G3を保守モードで起動し、次のようにコマンドを実行してください。
| |
---|
overlayfs は差分を ファイル単位で管理するため、予想以上にRAMディスクを消費する場合があります。
単に、新しいファイルやディレクトリを作れば、その分RAMディスクが消費されるのは想像に難くないと思います。
しかし、「lower=eMMC に既に存在していたファイルの書き換え」をする場合は、upper=RAMディスク に対象のファイル全体をコピーして書き換え」ます。
具体的に、問題になりそうな例を紹介します。
例えば、sqlite はDB毎に1つのファイルでデータ格納します。ここで、1GBのDBを作ってeMMCに保存した後、
overlayfsによる保護を有効にして起動した後に、たった10バイトのレコードを
追加しただけでRAMディスクは 1GB + 10バイト 消費されます。実際には、
Armadilloに1GBもRAMは無いので、追記を開始した時点でRAMディスクが不足します。
|
| |
---|
overlayfsによる、eMMCへの書き込み保護を行う場合、
必ず実際の運用状態でのテストを行い、RAMディスクが不足しないか確認してください。
動作中に書き込むファイルを必要最小限に留めると共に、追記を行う大きなファイルを作らない実装の検討を行ってください。
|
| |
---|
Armadillo-IoT G3 の eMMC の記録方式は出荷時に SLC に設定しており、MLC 方式の eMMC よりも消去回数の上限が高くなっています。
そのため、開発するシステムの構成によってはeMMCへの書き込み保護機能を必要としない可能性があります。
|
| |
---|
eMMCへの書き込み保護機能を有効にすると、eMMCを安全に使用できるというメリットがありますが、その分、使用できるRAMサイズが減る、システム構成が複雑になる、デメリットもあります。
開発・運用したいシステムの構成、eMMCへの書き込み保護機能のメリット・デメリットを十分に考慮・評価したうえで、保護機能を使用する、しないの判断を行ってください。
|
アドオンインターフェースのGPIOを制御する方法を説明します。
Armadillo-IoT のGPIOは、generic GPIOとして実装されています。GPIOクラスディレクトリ以下のファイルによってGPIOの制御を行うことができます。
アドオンインターフェース(CON1, CON2)のGPIOと、GPIOクラスディレクトリの対応を次に示します。
表22.1 アドオンインターフェースのGPIOディレクトリ ピン番号 | GPIOクラスディレクトリ |
---|
CON1_3ピン, CON2_41ピン | /sys/class/gpio/gpio64 | CON1_4ピン, CON2_40ピン | /sys/class/gpio/gpio65 | CON1_5ピン, CON2_39ピン | /sys/class/gpio/gpio66 | CON1_6ピン, CON2_38ピン | /sys/class/gpio/gpio67 | CON1_7ピン, CON2_32ピン | /sys/class/gpio/gpio98 | CON1_8ピン, CON2_34ピン | /sys/class/gpio/gpio99 | CON1_9ピン, CON2_36ピン | /sys/class/gpio/gpio100 | CON1_10ピン, CON2_37ピン | /sys/class/gpio/gpio101 | CON1_11ピン, CON2_35ピン | /sys/class/gpio/gpio102 | CON1_12ピン, CON2_50ピン | /sys/class/gpio/gpio103 | CON1_13ピン, CON2_24ピン | /sys/class/gpio/gpio106 | CON1_14ピン, CON2_25ピン | /sys/class/gpio/gpio107 | CON1_15ピン, CON2_33ピン | /sys/class/gpio/gpio139 | CON1_16ピン, CON2_46ピン | /sys/class/gpio/gpio179 | CON1_17ピン, CON2_47ピン | /sys/class/gpio/gpio180 | CON1_18ピン, CON2_49ピン | /sys/class/gpio/gpio182 | CON1_19ピン, CON2_48ピン | /sys/class/gpio/gpio181 | CON1_22ピン, CON2_42ピン | /sys/class/gpio/gpio108 | CON1_23ピン, CON2_43ピン | /sys/class/gpio/gpio109 | CON1_24ピン | /sys/class/gpio/gpio89 | CON1_25ピン | /sys/class/gpio/gpio90 | CON1_32ピン | /sys/class/gpio/gpio204 | CON1_33ピン | /sys/class/gpio/gpio205 | CON1_34ピン | /sys/class/gpio/gpio199 | CON1_35ピン | /sys/class/gpio/gpio194 | CON1_36ピン | /sys/class/gpio/gpio200 | CON1_37ピン | /sys/class/gpio/gpio195 | CON1_38ピン | /sys/class/gpio/gpio192 | CON1_39ピン | /sys/class/gpio/gpio193 | CON1_40ピン | /sys/class/gpio/gpio97 | CON1_41ピン | /sys/class/gpio/gpio96 | CON1_42ピン | /sys/class/gpio/gpio196 | CON1_43ピン | /sys/class/gpio/gpio197 | CON1_44ピン | /sys/class/gpio/gpio198 | CON1_45ピン | /sys/class/gpio/gpio202 | CON1_46ピン | /sys/class/gpio/gpio203 | CON1_47ピン | /sys/class/gpio/gpio140 | CON1_48ピン | /sys/class/gpio/gpio141 | CON1_49ピン | /sys/class/gpio/gpio142 | CON1_50ピン | /sys/class/gpio/gpio201 | CON1_51ピン | /sys/class/gpio/gpio143 | CON1_52ピン | /sys/class/gpio/gpio144 | CON1_53ピン | /sys/class/gpio/gpio145 |
以降の説明では、任意のGPIOを示すGPIOクラスディレクトリを"/sys/class/gpio/[GPIO] "のように表記します。
22.3.1. GPIOクラスディレクトリを作成する
/sys/class/gpio/export にGPIO番号を書き込むことによって、GPIOクラスディレクトリを作成することができます。
アドオンインターフェース(CON1) 3ピンに対応するGPIOクラスディレクトリを作成する例を次に示します。
| |
---|
作成済みのGPIOクラスディレクトリを削除するには、/sys/class/gpio/unexport にGPIO番号を書き込みます。
|
| |
---|
工場出荷イメージでは、Linux カーネルのコンフィギュレーションにてAIOTG_STD_ADDON_AUTO_DETECTが有効化されています。
AIOTG_STD_ADDON_AUTO_DETECTが有効化されていると、アドオンモジュールの自動認識機能が動作し、必要に応じてピンマルチプレクス設定などを行います。自動認識機能にて既に設定が行われいるピンはGPIOクラスディレクトリの作成を行うことができません。
既に設定が行われいるピンのGPIOクラスディレクトリを作成したい場合は、Linux カーネルのコンフィギュレーションにてAIOTG_STD_ADDON_AUTO_DETECTを無効化してください。
Linux カーネルのコンフィギュレーションの変更方法については、「イメージをカスタマイズする」を参照してください。
|
GPIOディレクトリ以下のdirectionファイルへ値を書き込むことによって、入出力方向を変更することができます。directionに書き込む有効な値を次に示します。
表22.2 directionの設定 設定 | 説明 |
---|
high | 入出力方向をOUTPUTに設定します。出力レベルの取得/設定を行うことができます。出力レベルはHIGHレベルになります。 | out | 入出力方向をOUTPUTに設定します。出力レベルの取得/設定を行うことができます。出力レベルはLOWレベルになります。 | low | outを設定した場合と同じです。 | in | 入出力方向をINPUTに設定します。入力レベルの取得を行うことができますが設定はできません。 |
GPIOディレクトリ以下のvalueファイルから値を読み出すことによって、入力レベルを取得することができます。"0"はLOWレベル、"1"はHIGHレベルを表わします。入力レベルの取得は入出力方向がINPUT, OUTPUTのどちらでも行うことができます。
入出力方向がOUTPUTの時に読み出される値は、GPIOピンの状態です。そのため、valueファイルに書き込んだ値とは異なる場合があります。
GPIOディレクトリ以下のvalueファイルへ値を書き込むことによって、出力レベルを設定することができます。"0"はLOWレベル、"0"以外はHIGHレベルを表わします。出力レベルの設定は入出力方向がOUTPUTでなければ行うことはできません。
22.4. AR9462モジュールを使って2.4GHz帯で通信する使用例
2つの機器をサンプルにAR9462モジュールを使って2.4GHz帯で通信するときの使い方について説明します。
22.4.1. 「BVMCN1101AA」の信号を受信する
Braveridge社製のビーコン「BVMCN1101AA」を例にビーコン信号を受信する方法を説明します。
「BVMCN1101AA」のアドバタイジング・パケットを受信するためには、bluetoothctl コマンドを使います。
[bluetooth]のプロンプトが表示されたら、scan on で信号を受信できます。
ご利用の環境によっては、ほかの機器からの信号も受信されます。
スキャンを中止するには、scan off を実行します。
bluetoothctlを終了するには、exit を実行します。
TEXAS INSTRUMENTS社製のセンサータグ「CC2650」を例にセンサータグをgatttool で操作する方法を説明します。
手順22.2 「CC2650」の操作手順
hcitool lescan を実行して、「CC2650」のMACアドレスを確認します。
ご利用の環境によっては、他の機器も検出されます。
「CC2650」に接続します。
プライマリサービスを確認するには、primary を実行します。
0x004c~0x0050でハンドルされているプロファイルのUUIDを確認するには、char-desc を実行します。
プロファイルの情報を読み取るには、char-read-hnd を実行します。
プロファイルの情報を設定するには、char-write-cmd を実行します。
操作を終了するには、exit を実行します。
22.5. sshでArmadillo-IoT G3に接続するssh-serverをインストールする sshでrootのログインを禁止する /etc/ssh/sshd_config内のPermitRootLogin をnoに設定します。
| |
|